Physics, asked by gahlot331, 9 months ago

Calculate the total surface area and curved surface area of a cone of which slant height is 28 m and radius is 7m.​

Answers

Answered by Anonymous
43

\large{\red{\bold{\underline{Given:}}}}

 \sf \: (i) \: Slant \: height \: of \: the \: cone (l) = 28m \\  \\  \sf \: (ii) \: Radius \: of \: its \: base(r) = 7m

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cone \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cone

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total  \: surface \:  area = \pi rl + \pi {r}^{2} \\  \\  \sf \: Curved \:  surface \:  area = \pi rl

\large{\red{\bold{\underline{Solution:}}}}

 \sf \: Let's \: consider \: total \: surface \: area \: as \: T.S.A. \\ \sf \: And \: curved \: surface \: area \: as \: C.S.A.

\large{\pink{\bold{\underline{Then:}}}}

 \sf \:  \longrightarrow \: T.S.A = \pi r(r + l) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 7(7 + 28) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 7(35) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{\cancel7}  \times \cancel7 (35) \\  \\ \longrightarrow \: \sf \:T.S.A = 22 \times 35 \\  \\ \longrightarrow \: \sf \:T.S.A = 770 \:  {m}^{2}

\large{\green{\bold{\underline{And:}}}}

 \sf  \longrightarrow \: \sf \: C.S.A = \pi rl \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{7} \times 7 \times 28 \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{\cancel7} \times \cancel7 \times 28 \\  \\ \longrightarrow \: \sf \: C.S.A = 22 \times 28 \\  \\ \longrightarrow \: \sf \: C.S.A = 616 \:  {m}^{2}

\large{\red{\bold{\underline{Therefore:}}}}

 \sf \: Total \: surface \: area \: of \: cone \: is \: 770 {m}^{2} \: and \\ \sf \: curved \: surface \: area \: of \: cone \: is \: 616 {m}^{2}.


mddilshad11ab: perfect
Answered by Anonymous
34

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Calculate the total surface area and curved surface area of a cone of which slant height is 28 m and radius is 7m.

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

Given that,

  • \bf\: ↪Slant\:height(l)\:_{(Cone)} = 28 m.
  • \bf\:↪ Radius(r)\:_{(Cone)} = 7 m.

To find,

  • \bf\red{ Total\:surface\:area\:_{(Cone)}}
  • \bf\red{ Curved\:surface\:area\:_{(Cone)}}

We know that,

Formal for :

\sf\:\implies Total\:surface\:area\:_{(Cone)} = tex\pir(r + l)

\sf\: \implies \frac{22}{7} \times 7(7 + 28)

\sf\:\implies 22(35)

\sf\:\implies 770

\underline{\boxed{\bf{\purple{ ∴ Hence, \:Total\:surface\:area\:of\:cone\: = 770 m^{2}}}}}\:\blue{\bigstar}

Formula for :

\sf\:\implies Curved\:surface\:area\:_{(Cone)} = \pirl

\sf\:\implies \frac{22}{7} \times 7 \times 28

\sf\:\implies 22 \times  28

\sf\:\implies 616

\underline{\boxed{\bf{\purple{ ∴ Hence, \:Curved\:surface\:area\:of\:cone\: = 616 m^{2}}}}}\:\blue{\bigstar}

Hence, it is solved....

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

Cone Formulas :

\tt\green{ ◼ \: Total\:surface\:area\:_{(Cone)} : \pir(r + l) }

\tt\green{ ◼ \: Curved\:surface\:area\:_{(Cone)} : \pirl }

\tt\green{ ◼ \: Volume\:_{(Cone)} : \frac{1}{3}\:\pir²h}

\tt\green{ ◼ \: Slant\:height\:_{(Cone)} : l = \sqrt{h² + r²}}

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆

Similar questions