Math, asked by sss4269, 4 days ago

Can anyone help in this questions…………………………………,.,,………………

Attachments:

Answers

Answered by anindyaadhikari13
7

Solution :-

To Determine: The value of x.

Given Equation :-

 \rm \longrightarrow \ln(x + 3) - \ln(x) = 2 \ln(2)

We know that :-

 \rm \longrightarrow \ln(x) - \ln(y) =  \ln \bigg( \dfrac{x}{y} \bigg)

Therefore, we get :-

 \rm \longrightarrow\ln \bigg( \dfrac{x + 3}{x} \bigg) = \ln({2}^{2})

Removing log from both sides, we get :-

 \rm \longrightarrow \dfrac{x + 3}{x}  =4

 \rm \longrightarrow 4x = x + 3

 \rm \longrightarrow 3x = 3

 \rm \longrightarrow x = 1

Therefore, the value of x satisfying the given equation is 1.

To Know More :-

Logarithm Formulae.

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Answered by kamalrajatjoshi94
1

Answer:

x=1

In is logarithm in mathematics:-

Refer to 1st attachment for working.

Refer to 2nd attachment for identifies.

Attachments:
Similar questions