Physics, asked by jesvipatel, 2 months ago

Can anyone please solve urgently? ​

Attachments:

Answers

Answered by shreemanlegendlive
4

Question :

 \tt \displaystyle \int \limits_{-4}^{-1} \frac{\pi}{2} d\theta = ?

Solution :

 \tt \displaystyle \int \limits_{-4}^{-1} \frac{\pi}{2} d\theta

 \tt \implies \frac{\pi}{2} \displaystyle  \int\limits_{-4}^{-1} d\theta

 \tt \implies \frac{\pi}{2} \theta

 \tt \implies \frac{-1\pi}{2} - \frac{-4\pi}{2}

 \tt \implies - \frac{\pi}{2} + 2\pi

 \tt \implies \frac{3\pi}{2}

 \tt \displaystyle \int \limits_{-4}^{-1} \frac{\pi}{2} d\theta =\frac{3\pi}{2}

Formulas of integration :

\tt \int {x}^{n} \: dx = \frac{{x}^{n+1}}{n+1} + c

\tt \int {e}^{x} \: dx = {e}^{x}  + c

 \tt \int \frac{1}{x}\: dx = logx + c

 \tt \int sinx \: dx = -cosx + c

 \tt \int cosx\:dx = sinx + c

 \tt \int {sec}^{2} x \:dx = tanx + c

 \tt \int {cosec}^{2}x \:dx = - cotx + c

 \tt \int secxtanx \: dx = secx + c

 \tt \int cosecx.cotx \:dx = cosec x + c

Similar questions