Physics, asked by KarmaKun, 1 month ago

Can anyone solve this question..​

Attachments:

Answers

Answered by TrustedAnswerer19
41

 \leadsto \bf \: given \:  \: data \:  :  \\  \\  \rm \to \: Angle  \: of  \: projection \: \theta \: = {37}^{ \circ} \\  \\  \rm \to \: initial  \:  \: velocity \: V_0 = 15 \: m {s}^{ - 1}

To find :

  1. Time for reaching the ball at highest point = t
  2. Maximum height = H
  3. Horizontal range = R
  4. Total time for the ball in air = T

Solution :

{ \boxed{\boxed{\begin{array}{cc} \bf \: (1) \\  \\ \rm \: Time \:  for \: reaching  \: the \:  ball \:  at  \\ \\  \rm \:  highest  \: point  \: = t  =\frac{V_0sin\theta}{g}   \\  \\  =  \frac{15 \times sin37}{9.8} \\  \\  = 0.921 \: s \end{array}}}}

{ \boxed{\boxed{\begin{array}{cc}  \bf \: (2) \\  \\ \rm \: Maximum \:  height = H  =  \frac{ {V_0}^{2}  {sin}^{2} \theta}{2h}  \\  \\  =  \frac{ {(15)}^{2} \times  {(sin37)}^{2}  }{2 \times 9.8} \\  \\  = 4.15 \: m \end{array}}}}

{ \boxed{\boxed{\begin{array}{cc}  \bf \: (3) \\  \\  \rm \: Horizontal  \: range = R =  \frac{ {V_0}^{2}sin2\theta }{g}  \\  \\  =  \frac{ {(15)}^{2} \times sin(2 \times 37) }{9.8} \\  \\  = 22.06 \: m \end{array}}}}

{ \boxed{\boxed{\begin{array}{cc} \bf \: (4) \\  \\  \rm \: Total \: time \: in \: air \: =  T =  \frac{2V_0sin\theta}{g}   \\  \\  =  \frac{2  \times 15 \times sin37}{9.8}  \\  \\  = 1.84 \: s\end{array}}}}

Answered by mahanteshgejji
3

Answer:

i) Time at which the ball reaches the highest point t = 0.9 s

ii) Maximum height reached = 4.05 m

iii) Horizontal range = 21.6 m

iv) Time for which the ball is in air = 1.8 s

Explanation:

Angle of projection θ = 37°

∴ sin37° = 3/5   and cos37° = 4/5

Initial velocity u = 15 m/s

i) Time of ascent  t = u sinθ/g

                               = 15 x sin37° /10

                               = \frac{15 X 3}{5 X 10}

                               = 0.9 s        [ if g is taken as 9.8 then t = 0.91 s ]

Time at which the ball reaches the highest point t = 0.9 s

ii) Max height H_{max} = u² sin²θ / 2g

                                = 15² x (3/5)²/ 2 x 10

                                = (225 x 9)/ (25 x 2 x 10)

                                =81/20

                                = 4. 05 m

Maximum height reached = 4.05 m

iii) Horizontal range R = u²(2 sinθ cosθ)/g

                                    = (225 x 2 x 3/5 x 4/5 )/10

                                     = 9 x 2 x 3 x4 /10

                                     = 21.6 m

iv) Time of flight t_{f} = 2usinθ/g = 2 x time of ascent = 2 x 0.9 = 1.8 s

 ∴ Time for which the ball is in air = 1.8 s

Similar questions