Math, asked by yashwanthr171, 5 months ago

Can pls solve it the question is based on trigonometry​

Attachments:

Answers

Answered by akshatgupta099
2

Answer:

Just break tan and cot, rest is simple calculation.

Attachments:
Answered by Anonymous
5

Question:-

Prove the identity, where θ is an acute angle

Identity:-

\sf{\dfrac{tan\theta}{1-cot\theta} + \dfrac{cot\theta}{1-\tan\theta} = 1 + sec\theta cosec\theta}

To Prove:-

LHS = RHS

Solution:-

Taking LHS

\sf{\dfrac{tan\theta}{1-cot\theta} + \dfrac{cot\theta}{1-tan\theta}}

We know,

\sf{tan\theta = \dfrac{sin\theta}{cos\theta}}

\sf{cot\theta = \dfrac{cos\theta}{sin\theta}}

Hence,

\sf{\dfrac{\dfrac{sin\theta}{cos\theta}}{1-\dfrac{cos\theta}{sin\theta}} + \dfrac{\dfrac{cos\theta}{sin\theta}}{1-\dfrac{sin\theta}{cos\theta}}}

= \sf{\dfrac{\dfrac{sin\theta}{cos\theta}}{\dfrac{sin\theta - cos\theta}{sin\theta}} + \dfrac{\dfrac{cos\theta}{sin\theta}}{\dfrac{cos\theta - sin\theta}{cos\theta}}}

= \sf{\dfrac{sin^2\theta}{cos\theta(sin\theta - cos\theta)} + \dfrac{cos^2\theta}{sin\theta(cos\theta - sin\theta)}}

= \sf{\dfrac{sin^2\theta}{cos\theta(sin\theta - cos\theta)} - \dfrac{cos^2\theta}{sin\theta(sin\theta - cos\theta)}}

Taking LCM,

\sf{\dfrac{sin^3\theta - cos^3\theta}{cos\theta sin\theta(sin\theta - cos\theta)}}

Using the identity,

x³ - y³ = (x - y)(x² + xy + y²)

= \sf{\dfrac{(sin\theta - cos\theta)(sin^2\theta + sin\theta cosec\theta + cos^2\theta)}{cos\theta sin\theta (sin\theta - cos\theta)}}

= \sf{\dfrac{sin^2\theta + sin\theta cos\theta + cos^2\theta}{sin\theta cos\theta}}

= \sf{\dfrac{sin^2\theta + cos^2\theta + sin\theta cos\theta}{sin\theta cos\theta}}

We know,

sin²θ + cos²θ = 1

= \sf{\dfrac{1 + sin\theta cos\theta}{sin\theta cos\theta}}

= \sf{\dfrac{1}{sin\theta cos\theta} + \dfrac{sin\theta cos\theta}{sin\theta cos\theta}}

= \sf{\dfrac{1}{sin\theta cos\theta} + 1}

= \sf{\dfrac{1}{sin\theta}\times\dfrac{1}{cos\theta} + 1}

We know,

\sf{\dfrac{1}{sin\theta} = cosec\theta}

\sf{\dfrac{1}{cos\theta} = sec\theta}

Therefore,

= \sf{cosec\theta sec\theta + 1}

=> \sf{1 + sec\theta cosec\theta}

Hence, LHS = RHS (Proved)

______________________________________

Similar questions