Chemistry, asked by parkjisu747, 8 months ago

can someone slove this i'm getting the answer 2) . Answer key says 1) is the right answer ​

Attachments:

Answers

Answered by Terminator7501
0

Answer:

i think answer key is correct

Explanation:

Skip to contentIncrease Font Size

Logo for BC Open Textbooks

HomeReadSign in

Search in book:

Search in book …

SEARCH

CONTENTS

CHEMISTRY

Chapter 2. Atoms, Molecules, and Ions

EMICAL FORMULAS

Learning Objectives

By the end of this section, you will be able to:

 

Determine the empirical formulas for the following compounds:

(a) acetic acid, C2H4O2

(b) citric acid, C6H8O7

(c) hydrazine, N2H4

(d) nicotine, C10H14N2

(e) butane, C4H10

Write the empirical formulas for the following compounds:

(a)

Figure A shows a structural diagram of two carbon atoms that form a single bond with each other. The left carbon atom forms single bonds with hydrogen atoms each. The right carbon forms a double bond to an oxygen atom. The right carbon also forms a single bonded to another oxygen atom. This oxygen atom also forms a single bond to a hydrogen atom.

(b)

Figure B shows a structural diagram containing a leftmost carbon that forms single bonds to three hydrogen atoms each. This leftmost carbon also forms a single bond to a second carbon atom. The second carbon atom forms a double bond with an oxygen atom. The second carbon also forms a single bond to a second oxygen atom. This oxygen atom forms a single bond to a third carbon atom. This third carbon atom forms single bonds with two hydrogen atoms each as well as a single bond with another carbon atom. The rightmost carbon atom forms a single bond with three hydrogen atoms each.

Open the Build a Molecule simulation and select the “Larger Molecules” tab. Select an appropriate atoms “Kit” to build a molecule with two carbon and six hydrogen atoms. Drag atoms into the space above the “Kit” to make a molecule. A name will appear when you have made an actual molecule that exists (even if it is not the one you want). You can use the scissors tool to separate atoms if you would like to change the connections. Click on “3D” to see the molecule, and look at both the space-filling and ball-and-stick possibilities.

(a) Draw the structural formula of this molecule and state its name.

(b) Can you arrange these atoms in any way to make a different compound?

GLOSSARY

empirical formula

formula showing the composition of a compound given as the simplest whole-number ratio of atoms

isomers

compounds with the same chemical formula but different structures

molecular formula

formula indicating the composition of a molecule of a compound and giving the actual number of atoms of each element in a molecule of the compound.

spatial isomers

compounds in which the relative orientations of the atoms in space differ

structural formula

shows the atoms in a molecule and how they are connected

structural isomer

one of two substances that have the same molecular formula but different physical and chemical properties because their atoms are bonded differently

Solutions

Answers to Chemistry End of Chapter Exercises

1. The symbol for the element oxygen, O, represents both the element and one atom of oxygen. A molecule of oxygen, O2, contains two oxygen atoms; the subscript 2 in the formula must be used to distinguish the diatomic molecule from two single oxygen atoms.

3. (a) molecular CO2, empirical CO2; (b) molecular C2H2, empirical CH; (c) molecular C2H4, empirical CH2; (d) molecular H2SO4, empirical H2SO4

5. (a) C4H5N2O; (b) C12H22O11; (c) HO; (d) CH2O; (e) C3H4O3

7. (a) CH2O; (b) C2H4O

9. (a) ethanol

A Lewis Structure is shown. An oxygen atom is bonded to a hydrogen atom and a carbon atom. The carbon atom is bonded to two hydrogen atoms and another carbon atom. That carbon atom is bonded to three more hydrogen atoms. There are a total of two carbon atoms, six hydrogen atoms, and one oxygen atoms.

(b) methoxymethane, more commonly known as dimethyl ether

A Lewis Structure is shown. An oxygen atom is bonded to two carbon atoms. Each carbon atom is bonded to three different hydrogen atoms. There are a total of two carbon atoms, six hydrogen atoms, and one oxygen atom.

Answered by harshitarks525
0

I think answer key is correct

Similar questions