Math, asked by shibnariyas0, 9 months ago

Can u guys help me With this!9th Grade Chapter-Numbers​

Attachments:

Answers

Answered by anshikaverma29
5

1)(\sqrt{3}-\sqrt{2})^2\\  Identity:(a-b)^2=a^2+b^2-2ab\\=(\sqrt{3})^2+(\sqrt{2})^2-2*\sqrt{3}*\sqrt{2}\\    =3+2-2\sqrt{6}\\ =5-2\sqrt{6}\\ 2)(\sqrt{7} +\sqrt{11})^2\\ Identity:(a+b)^2=a^2+b^2+2ab\\=(\sqrt{7}^2)+(\sqrt{11})^2 +2* \sqrt{7}*\sqrt{11}  \\=7+11+2\sqrt{77}\\ =18+2\sqrt{77}\\ 3)(\sqrt{7}+5)(\sqrt{7}+ 3)\\ =7+3\sqrt{7}+5\sqrt{7}+15\\  =22+8\sqrt{7}\\ 4)(\sqrt{3} -1)(\sqrt{3} +1)\\Identity:(a+b)(a-b)=a^2-b^2\\=(\sqrt{3})^2-(1)^2\\  =3-1\\=2

Hope it helps......   :D

Answered by StarrySoul
16

Solution :

1) \sf \:  \: ( \sqrt{3}  -  \sqrt{2} ) ^{2}

Using identity :

 \bigstar\: \boxed{ \sf \: (a - b) ^{2}  =  {a}^{2}   -  2ab +  {b}^{2} }

 \longrightarrow \sf \:  (\sqrt{3} )^{2}  - 2( \sqrt{3} ) (\sqrt{2} ) + (   \sqrt{2} )^{2}

 \longrightarrow \sf \: 3 - 2 \sqrt{3 \times 2}  + 2

 \longrightarrow \sf \: 3 - 2 \sqrt{6}  + 2

 \longrightarrow \sf \red{5- 2 \sqrt{6} }

________________________________

2) \sf \:  \: ( \sqrt{7}   +   \sqrt{11} ) ^{2}

Using identity :

 \bigstar\: \boxed{ \sf \: (a +  b) ^{2}  =  {a}^{2}   +  2ab +  {b}^{2} }

 \longrightarrow \sf \:  (\sqrt{7} ) ^{2}  + 2( \sqrt{7} )( \sqrt{11} ) +  (\sqrt{11} ) ^{2}

 \longrightarrow \sf \: 7 + 2 \sqrt{7 \times 11}  + 11

 \longrightarrow \sf \red{18 + 2 \sqrt{77} }

________________________________

3) \sf \:  \: ( \sqrt{7}  +  5)( \sqrt{7}  +  3)

Using identity :

 \bigstar\: \boxed{ \sf \: (x+  a)(x + b)  =  {x}^{2}   + ( a + b)x+  ab}

 \longrightarrow \sf \:(  \sqrt{7} ) ^{2}  + (5 + 3 ) \sqrt{7}  + ( 5 \times 3 )

 \longrightarrow \sf \:7 + 8( \sqrt{7} ) + 15

 \longrightarrow \sf \red{22 + 8 \sqrt{7} }

________________________________

4) \sf \:  \: ( \sqrt{3}  - 1)( \sqrt{3}  + 1)

Using identity :

 \bigstar\: \boxed{ \sf \: (a - b)(a +b) =  {a}^{2}  -  {b}^{2}  }

 \longrightarrow \sf  (\sqrt{3} ) ^{2}  -  (\sqrt{1} )^{2}

 \longrightarrow \sf  ( \sqrt{3}   \times  \sqrt{3} ) - ( \sqrt{1}  \times  \sqrt{1} )

 \longrightarrow \sf  3 - 1

 \longrightarrow \sf \red{2 }

Similar questions