Math, asked by Anonymous, 4 months ago

CLASS 9
I need answers for both of them... atleast the 2nd one...
THESE QUESTIONS ARE BASED ON THE CH (Number System)​

Attachments:

Answers

Answered by Anonymous
49

1.) \:  \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \\  =   \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  =  \frac{ \sqrt{3}  + \sqrt{2} }{ { (\sqrt{3}) }^{2}  - ( { \sqrt{2} )}^{2} }  \\ =   \frac{1.732 + 1.414}{3 - 2}  \\  =  \frac{3.146}{1}  \\  = 3.146

Answered by Anonymous
87

Question :

If \sf{\sqrt{3} = 1.732} and \sf{\sqrt{2} = 1.414}, then find the value of \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}}}

Answer :

  • The value of \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}}} is \sf{\dfrac{1}{1.318}} \\ \\

Explanation :

Given :

  • The value of \sf{\sqrt{3} = 1.732}
  • \sf{\sqrt{2} = 1.414}

To find :

  • The value of \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}}} = ?

Solution :

By substituting the value of √3 and √2 in the equation, we get :

 :\implies \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}} = \dfrac{1}{\sqrt{3} - \sqrt{2}}} \\ \\ \\ :\implies \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}} = \dfrac{1}{1.732 - 1.414}} \\ \\ \\ :\implies \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}} = \dfrac{1}{1.318}} \\ \\ \\ \boxed{\therefore \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}} = \dfrac{1}{1.318}}} \\ \\

Therefore,

  • The value of \sf{\dfrac{1}{\sqrt{3} - \sqrt{2}}} = \sf{\dfrac{1}{1.318}} \\ \\

Question :

Find the value of a and b for \sf{a + b\sqrt{3} = \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

Answer :

The value of a and b for the equation \sf{a + b\sqrt{3} = \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}} is

Explanation :

Given :

  • Equation with whose respect , we have to find the value of a and b , a = 7 ; b = 3.

\sf{a + b\sqrt{3} = \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

To find :

  • The value of a and b. a = ? ; b = ?

Solution :

From the given equation, we get :

\sf{a + b\sqrt{3} = \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

  • L.H.S. = \sf{a + b\sqrt{3}}

  • R.H.S. = \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

Here, let's solve the R.H.S. of the equation.

:\implies \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

By multiplying \sf{(2 + \sqrt{3})} to both the Numerator and Denominator of the equation, we get :

:\implies \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = \dfrac{(2 + \sqrt{3}) \times (2 + \sqrt{3})}{(2 - \sqrt{3}) \times (2 + \sqrt{3})}} \\ \\ \\ :\implies \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = \dfrac{2(2 + \sqrt{3}) + \sqrt{3}(2 + \sqrt{3})}{2(2 + \sqrt{3}) - \sqrt{3}(2 + \sqrt{3})}} \\ \\ \\ :\implies \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = \dfrac{4 + 2\sqrt{3} + 2\sqrt{3} + 3}{4 + 2\sqrt{3} - 2\sqrt{3} - 3}} \\ \\ \\ :\implies \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = \dfrac{7 + 4\sqrt{3}}{1}} \\ \\ \\\boxed{\therefore \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = 7 + 4\sqrt{3}}} \\ \\

Now by comparing the L.H.S. and R.H.S. of the equation, we get :

:\implies \sf{a + b\sqrt{3} = 7 + 3\sqrt{3}} \\ \\ \\ :\implies \sf{a = 7,  b\sqrt{3} = 3\sqrt{3}} \\ \\ \\ :\implies \sf{a = 7, b = \dfrac{3\sqrt{3}}{\sqrt{3}}} \\ \\ \\ :\implies \sf{ a = 7,  b = 3} \\ \\ \\ \boxed{\therefore \sf{a = 7; b = 3}} \\ \\

Hence the value of a is 7 and that of b is 3.


Anonymous: Outstanding Buddy !(◕ᴗ◕✿)
BrainIyMSDhoni: Great :)
Similar questions