Class X
Maths
Solve (cos squared theta minus 3 cos theta + 2) / sin square theta = 1.
With steps.
Answers
Answered by
7
Answer:
θ = 60°,0°
Step-by-step explanation:
Given Equation is (cos²θ - 3cosθ + 2)/sin²θ = 1
⇒ cos²θ - 3cosθ + 2 = sin²θ
⇒ cos²θ - 3cosθ + 2 = (1 - cos²θ)
⇒ cos²θ - 3cosθ + 2 - 1 + cos²θ = 0
⇒ 2cos²θ - 3cosθ + 1 = 0
⇒ 2cos²θ - 2cosθ - cosθ + 1 = 0
⇒ 2cosθ(cosθ - 1) - (cosθ - 1) = 0
⇒ (2cosθ - 1)(cosθ - 1) = 0
⇒ cosθ = (1/2) (or) cosθ = 1
⇒ θ = 60° (or) 0°
Hope it helps!
rednabeel10p5xoj7:
Thx
=> 2cos^2A + (-2 - 1)cosA + 1 = 0
=> 2cos^2A - 2cosA - cosA + 1 = 0
=> 2cosA(cosA - 1) - (cosA - 1) = 0
Answered by
2
Step-by-step explanation:
cosA^2-3cosA+2 =1(sinA^2) so add two cosA ^2 on both sides then 3(cosA^2)-3cosA+2 =1 hence cosA=0 or 60 therefore A=60 degrees or 0 degrees
Similar questions