Math, asked by rehanfaiz111, 3 months ago

complete the table in words to algebra expressions product of square of x and cube of y​

Answers

Answered by sngd008
1

Answer:

Question 1:

Get the algebraicexpressions in the following cases using variables, constants and arithmetic operations.

(i) Subtraction of z from y.

(ii) One-half of the sum of numbers x and y.

(iii) The number z multiplied by itself.

(iv) One-fourth of the product of numbers p and q.

(v) Numbers x and y both squared and added.

(vi) Number 5 added to three times the product of number m and n.

(vii) Product of numbers y and z subtracted from 10.

(viii)Sum of numbers a and b subtracted from their product.

ANSWER:

(i) y − z

(ii)

(iii) z2

(iv)

(v) x2 + y2

(vi) 5 + 3 (mn)

(vii) 10 − yz

(viii) ab − (a + b)

Page No 234:

Question 2:

(i) Identify the terms and their factors in the following expressions

Show the terms and factors by tree diagrams.

(a) x − 3 (b) 1 + x + x2 (c) y − y3

(d) (e) − ab + 2b2 − 3a2

(ii) Identify terms and factors in the expressions given below:

(a) − 4x + 5 (b) − 4x + 5y (c) 5y + 3y2

(d) (e) pq + q

(f) 1.2 ab − 2.4 b + 3.6 a (g)

(h) 0.1p2 + 0.2 q2

ANSWER:

(i)

(a)

(b)

(c)

(d)

(e)

(ii)

Row

Expression

Terms

Factors

(a)

− 4x + 5

− 4x

5

− 4, x

5

(b)

− 4x + 5y

− 4x

5y

− 4, x

5, y

(c)

5y + 3y2

5y

3y2

5, y

3, y, y

(d)

xy + 2x2y2

xy

2x2y2

x, y

2, x, x, y, y

(e)

pq + q

pq

q

p, q

q

(f)

1.2ab − 2.4b + 3.6a

1.2ab

− 2.4b

3.6a

1.2, a, b

− 2.4, b

3.6, a

(g)

(h)

0.1p2 + 0.2q2

0.1p2

0.2q2

0.1, p, p

0.2, q, q

Page No 235:

Question 3:

Identify the numerical coefficients of terms (other than constants) in the following expressions:

(i) 5 − 3t2 (ii) 1 + t + t2 + t3 (iii) x + 2xy+ 3y

(iv) 100m + 1000n (v) − p2q2 + 7pq (vi) 1.2a + 0.8b

(vii) 3.14 r2 (viii) 2 (l + b) (ix) 0.1y + 0.01 y2

ANSWER:

Row

Expression

Terms

Coefficients

(i)

5 − 3t2

− 3t2

− 3

(ii)

1 + t + t2 + t3

t

t2

t3

1

1

1

(iii)

x + 2xy + 3y

x

2xy

3y

1

2

3

(iv)

100m + 1000n

100m

1000n

100

1000

(v)

− p2q2 + 7pq

− p2q2

7pq

− 1

7

(vi)

1.2a +0.8b

1.2a

0.8b

1.2

0.8

(vii)

3.14 r2

3.14 r2

3.14

(viii)

2(l + b)

2l

2b

2

2

(ix)

0.1y + 0.01y2

0.1y

0.01y2

0.1

0.01

Page No 235:

Question 4:

(a) Identify terms which contain x and give the coefficient of x.

(i) y2x + y (ii) 13y2− 8yx (iii) x + y + 2

(iv) 5 + z + zx (v) 1 + x+ xy (vi) 12xy2 + 25

(vii) 7x + xy2

(b) Identify terms which contain y2 and give the coefficient of y2.

(i) 8 − xy2 (ii) 5y2 + 7x (iii) 2x2y −15xy2 + 7y2

ANSWER:

(a)

Row

Expression

Terms with x

Coefficient (i)

y2x + y

y2x

y2

(ii)

13y2 − 8yx

− 8yx

−8y

(iii)

x + y + 2

x

1

(iv)

5 + z + zx

zx

z

(v)

1 + x + xy

x

xy

1

y

(vi)

12xy2 + 25

12xy2

12y2

(vii)

7x+ xy2

7x

xy2

7

y2

(b)

Row

Expression

Terms with y2

Coefficient of y2

(i)

8 − xy2

−xy2

− x

(ii)

5y2 + 7x

5y2

5

(iii)

2x2y + 7y2

−15xy2

7y2

−15xy2

7

−15x

Page No 235:

Question 5:

Classify into monomials, binomials and trinomials.

(i) 4y − 7z (ii) y2 (iii) x + y − xy

(iv) 100 (v) ab − a − b (vi) 5 − 3t

(vii) 4p2q − 4pq2 (viii) 7mn (ix) z2 − 3z + 8

(x) a2 + b2 (xi) z2 + z (xii) 1 + x + x2

ANSWER:

The monomials, binomials, and trinomials have 1, 2, and 3 unlike terms in it respectively.

(i) 4y − 7z

Binomial

(ii) y2

Monomial

(iii) x + y − xy

Trinomial

(iv) 100

Monomial

(v) ab − a − b

Trinomial

(vi) 5 − 3t

Binomial

(vii) 4p2q − 4pq2

Binomial

(viii) 7mn

Monomial

(ix) z2 − 3z + 8

Trinomial

(x) a2 + b2

Binomial

(xi) z2 + z

Binomial

(xii) 1 + x + x2

Trinomial

Page No 235:

Question 6:

State whether a given pair of terms is of like or unlike terms.

(i) 1, 100 (ii) (iii) − 29x, − 29y

(iv) 14xy, 42yx (v) 4m2p, 4mp2 (vi) 12xz, 12 x2z2

ANSWER:

The terms which have the same algebraic factors are called like terms. However, when the terms have different algebraic factors, these are called unlike terms.

(i) 1, 100

Like

(ii) − 7x,

Like

(iii) −29x, −29y

Unlike

(iv) 14xy, 42yx

Like

(v) 4m2p, 4mp2

Unlike

(vi) 12xz, 12x2z2

Unlike

Page No 235:

Question 7:

Identify like terms in the following:

(a) −xy2, − 4yx2, 8x2, 2xy2, 7y, − 11x2, − 100x, −11yx, 20x2y, −6x2, y, 2xy,3x

(b) 10pq, 7p, 8q, − p2q2, − 7qp, − 100q, − 23, 12q2p2, − 5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2

ANSWER:

(a) −xy2, 2xy2

−4yx2, 20x2y

8x2, −11x2, −6x2

7y, y

−100x, 3x

−11xy, 2xy

(b) 10pq, −7qp, 78qp

7p, 2405p

8q, −100q

−p2q2, 12p2q2

−23, 41

−5p2, 701p2

13p2q, qp2

Page No 239:

Question 1:

Simplify combining like terms:

(i) 21b − 32 + 7b − 20b

(ii) − z2 + 13z2 − 5z + 7z3 − 15z

(iii) p − (p − q) − q − (q − p)

(iv) 3a − 2b − ab − (a − b + ab) + 3ab + b − a

(v) 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2

(vi) (3 y2 + 5y − 4) − (8y − y2 − 4)

ANSWER:

(i) 21b − 32 + 7b − 20b = 21b + 7b − 20b − 32

= b (21 + 7 − 20) −32

= 8b − 32

(ii) − z2 + 13z2 − 5z + 7z3 − 15z = 7z3 − z2 + 13z2 − 5z − 15z

= 7z3 + z2 (−1 + 13) + z (−5 − 15)

= 7z3 + 12z2 − 20z

(iii) p − (p − q) − q − (q − p) = p − p + q − q − q + p

= p − q

(iv) 3a − 2b − ab − (a − b + ab) + 3ba + b − a

= 3a − 2b − ab − a + b − ab + 3ab

Similar questions