Computer Science, asked by Anonymous, 1 year ago

Computer Science Question !!!

Convert
 2ab_{16}
to it's decimal equivalent.

Please answer it!

Answers

Answered by Avengers00
20
\underline{\underline{\Huge{\textbf{Question:}}}}

\sf\textsf{Convert $2ab_{16}$ to it's decimal equivalent.}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\Large{\textbf{Hexadecimal\: Number\: System}}}

\sf\textsf{Hexadecimal Number system is a Base-16 Positional Numeral sytem}

\sf\textsf{It consists of 16 distinct symbols:}
\sf\textsf{which are 0 - 9 (and are same as in decimal Number system)}
\sf\textsf{and A - F (or a - f) (which represents 10 - 15 in the decimal Number system)}

\textit{The following table shows the same:}

\begin{tabular}{|c|c|}\cline{1-2}\bf Decimal & \bf Hexadecimal\\ \bf Number System & \bf Number System\\\cline{1-2}0&0\\1&1\\2&2\\3&3\\4&4\\5&5\\6&6\\7&7\\8&8\\9&9\\&\\A&10\\B&11\\C&12\\D&13\\E&14\\F&15\\\cline{1-2}\end{tabular}

\\

It overcomes the problem of \sf\textsf{errors in reading or writing the long bit binary numbers}
such as 16 or 32-bit as it treats 4-bits or a single nibble and considers it's equivalent Hexadecimal Number.

\sf\textit{This also makes conversion between binary}\\\sf\textit{and Hexadecimal Number system simpler.}

Due to this, Most of the today's digital systems or computers use the Hexadecimal Number system.

\\

\underline{\Large{\textbf{steps \: for \: hexdecimal \: to \: decimal \: conversion}}}

\large{\mathbf{1:}} \\ \: \sf\textsf{Each digit of the Hexadecimal Number}\\\sf\textsf{is multiplied with the positional weight of the digit.}

\large{\mathbf{2:}} \\ \sf \textsf{Adding each of these multiplied values} \\ \sf \textsf{gives decimal equivalent of the given Hexadecimal Number.}

\\

Given,

2ab_{16} 

\begin{tabular}{|c|c|c|c||}\cline{1-4} \bf Hexadecimal Number & 2 & A & B\\\cline{1-4}\bf Bit Position (n) &2&1&0\\\cline{1-4}\bf Weight Factor ($16^{n}$)&$16^{2}$&$16^{1}$&$16^{0}$\\\cline{1-4}\bf Bit $\times 16^{n}$&2$\times16^{2}$&10$\times16^{1}$&11$\times16^{0}$\\\cline{1-4}\bf Decimal Value&512&160&11\\\cline{1-4}\end{tabular}\begin{tabular}{|c|}\cline{1-2}\bf Decimal number\cline{1-2}\\512+160+11\\=683\\\\\cline{1-2}\end{tabular}

\implies (2ab)_{16}= (683)_{10}

\\

\therefore

\blacksquare \: \: \textsf{Decimal Equivalent of $(2ab)_{16}$= \underline{\Large{\textbf{683}}}}

Anonymous: wow ! what a presentation !
Avengers00: Thank you ((:
muakanshakya: :fb_wow: :speechless: Awesome ! :)
Avengers00: thank you :)
Sauron: ☺️❤️ Great answer ❤️☺️
Avengers00: thank you (:
Anonymous: Tysm bro
siddhartharao77: Nice Explanation
Avengers00: Thank you :)
Answered by Anonymous
0

ANSWER:-------

 16 distinct symbls: which are 0 - 9 (and are same as in decimal Number system)\sf\textsf{which are 0 - 9 (and are same as in decimal Number system)}which are 0 - 9 (and are same as in decimal Number system)and A - F (or a - f) (which represents 10 - 15 in the decimal Number system)\sf\textsf{and A - F (or a - f) (which represents 10 - 15 in the decimal Number system)}and A - F (or a - f) (which represents 10 - 15 in the decimal Number system)The following table shows the same:\textit{The following table shows the same:}The following table shows the same:

hope it helps:---T!—!ANKS!!!

Similar questions