Math, asked by KomalJindal, 1 year ago

cos^(-1)a+cos^(-1)b+cos^(-1)c=π,.. prove that a^2+b^2+c^2+2abc=1.......please answer with solutions.

Answers

Answered by Ngupta
9
hope this will helps you
Attachments:
Answered by abhi178
7

it is given that, cos-¹a + cos-¹b + cos-¹c = π

we have to prove that a² + b² + c² + 2abc = 1

cos-¹a + cos-¹b + cos-¹c = π

cos-¹a + cos-¹b = π - cos-¹c

⇒cos-¹(ab - √(1 - a²).√(1 - b²)) = π - cos-¹c

⇒ab - √(1 - b² - a² + a²b²) = cos(π - cos-¹c)

= ab - √(1 - b² - a² + a²b²) = -cos(cos-¹c)

⇒ab - √(1 - b² - a² + a²b²) = -c

⇒ab + c = √(1 - b² - a² + a²b²)

⇒a²b² + c² + 2abc = 1 - b² - a² + a²b²

⇒a² + b² + c² + 2abc = 1 [hence proved]

also read similar questions : (cos A)/a + (Cos B )/b+ (cos C)/c = (a 2 +b 2 + c 2 )/2abc

https://brainly.in/question/801642

prove that : tan [π/4 + 1/2 cos^-1 a/b] + tan[π/4 - 1/2 cos^-1 a/b] = 2b/a

https://brainly.in/question/5053141

Similar questions