Math, asked by mirun, 1 year ago

find all the angles between 0 and 360 which satisfy the equation sin^2theta=3/4?

Answers

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

All the angles θ where 0° < θ < 360° and

 \displaystyle \sf{ { \sin }^{2}  \theta =  \frac{3}{4} }

EVALUATION

Here it is given that

 \displaystyle \sf{ { \sin }^{2}  \theta =  \frac{3}{4} }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \pm \:  \frac{ \sqrt{3} }{2} }

Case : 1

 \displaystyle \sf{  \sin  \theta =  \:  \frac{ \sqrt{3} }{2} }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin  {60}^{ \circ}  }

 \displaystyle \sf{ \implies \:    \theta =    {60}^{ \circ}  }

Case : 2

 \displaystyle \sf{  \sin  \theta =  \:  \frac{ \sqrt{3} }{2} }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin  {60}^{ \circ}  }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin(  {180}^{ \circ}  - {60}^{ \circ})  }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin {120}^{ \circ}  }

 \displaystyle \sf{ \implies \:   \theta =   {120}^{ \circ}  }

Case : 3

 \displaystyle \sf{  \sin  \theta =  \:  -  \frac{ \sqrt{3} }{2} }

 \displaystyle \sf{ \implies \:  \sin  \theta =   - \sin  {60}^{ \circ}  }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin(  {180}^{ \circ}   +  {60}^{ \circ})  }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin{240}^{ \circ}  }

 \displaystyle \sf{ \implies \:   \theta =  {240}^{ \circ}  }

Case : 4

 \displaystyle \sf{  \sin  \theta =  -  \:  \frac{ \sqrt{3} }{2} }

 \displaystyle \sf{ \implies \:  \sin  \theta =  -  \sin  {60}^{ \circ}  }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin(  {360}^{ \circ}  - {60}^{ \circ})  }

 \displaystyle \sf{ \implies \:  \sin  \theta =  \sin  {300}^{ \circ}   }

 \displaystyle \sf{ \implies \:   \theta =    {300}^{ \circ}   }

FINAL ANSWER

θ = 60° , 120° , 240° , 300°

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

2. Find the value of cot (-3155°)

https://brainly.in/question/6963315

Similar questions