Math, asked by shahinasaberi8655, 1 year ago

cos ( 90+a) sec ( -a) tan ( 180-a) / sec ( 360-a) sin ( 180-a) cot ( 90-a ) =1

2morrow is my examplzzzzanswer me fastplzzzz...plzzzhelp meplzzzexperts friends plzzz

Answers

Answered by MaheswariS
5

\textbf{Given:}

\displaystyle\frac{cos(90^{\circ}+A)\,sec(-A)\,tan(180^{\circ}-A)}{sec(360^{\circ}-A)\,sin(180^{\circ}-A)\,cot(90^{\circ}-A)}

\textbf{To prove:}

\displaystyle\frac{cos(90^{\circ}+A)\,sec(-A)\,tan(180^{\circ}-A)}{sec(360^{\circ}-A)\,sin(180^{\circ}-A)\,cot(90^{\circ}-A)}=1

\boxed{\bf\,cos(90^{\circ}+A)=-sinA}

\boxed{\bf\,sec(-A)=secA}

\boxed{\bf\,tan(180^{\circ}-A)=-tanA}

\boxed{\bf\,sec(360^{\circ}-A)=secA}

\boxed{\bf\,sin(180^{\circ}-A)=sinA}

\boxed{\bf\,cot(90^{\circ}-A)=tanA}

\text{Now}

\displaystyle\frac{cos(90^{\circ}+A)\,sec(-A)\,tan(180^{\circ}-A)}{sec(360^{\circ}-A)\,sin(180^{\circ}-A)\,cot(90^{\circ}-A)}

=\displaystyle\frac{(-sinA)\,secA\,(-tanA)}{secA\,sinA\,tanA}

=\displaystyle\frac{sinA\,secA\,tanA}{secA\,sinA\,tanA}

=1

\therefore\bf\displaystyle\frac{cos(90^{\circ}+A)\,sec(-A)\,tan(180^{\circ}-A)}{sec(360^{\circ}-A)\,sin(180^{\circ}-A)\,cot(90^{\circ}-A)}=1

Find more:

Cos(90-theta)sec(90-theta)tan(theta)upon cosec(90-theta)sin(90-theta)cot(90-theta)+tan(90-theta)upon cot(theta) =2

https://brainly.in/question/4025386

Similar questions