Math, asked by syapalkhanba, 1 year ago

COS(90+x).sec(-x).tan(180-x)/sec(360-x)sin(180+x)cot(90-x)

Answers

Answered by Neha729
26
seeeeee thissss picccc.....
Attachments:
Answered by hotelcalifornia
12

Answer:

The value of

\frac { \cos ( 90 + x ) \sec ( - x ) \tan ( 180 - x ) } { \sec ( 360 - x ) \sin ( 180 + x ) \cot ( 90 - x ) } = - 1

Solution:

\frac { \cos ( 90 + x ) \sec ( - x ) \tan ( 180 - x ) } { \sec ( 360 - x ) \sin ( 180 + x ) \cot ( 90 - x ) }

We know that,

\begin{aligned} \cos ( 90 + x ) & = - \sin x \\\\ \sec ( - x ) & = \sec x \\\\ \tan ( 180 - x ) & = - \tan x \\\\ \sec ( 360 - x ) & = \sec x \\\\ \sin ( 180 + x ) & = - \sin x \\\\ \cot ( 90 - x ) & = \tan x \end{aligned}

\frac { \cos ( 90 + x ) \sec ( - x ) \tan ( 180 - x ) } { \sec ( 360 - x ) \sin ( 180 + x ) \cot ( 90 - x ) } = \frac { - \sin x \times \sec x \times - \tan x } { \sec x \times - \sin x \times \tan x }

=-1

Hence,

\frac { \cos ( 90 + x ) \sec ( - x ) \tan ( 180 - x ) } { \sec ( 360 - x ) \sin ( 180 + x ) \cot ( 90 - x ) } = - 1

Similar questions