Math, asked by Sari9jaishnoorishad, 1 year ago

prove that f'(a+b) = f'(a)+f'(b) if f(a)=x^2 and f(b)=x^3

Answers

Answered by kvnmurty
1
There seem to be some typing mistakes in the above qn

f(x) = x²           f(y) = y³
f '(x) = 2 x        f '(a) = 2 a
f '(a+b) = 2 (a+b) = 2 a + 2 b = f '(a) + f '(b)

The above relation does not hold good for   f (x) = x³  
 as  f '(x) = 3 x²  
f '(a+b) = 3 (a+b)²  = 3 a² + 3 b² + 6 ab = f '(a) + f '(b) +  6 a b



kvnmurty: click on red heart thanks
Similar questions