Math, asked by mustafeez51, 1 year ago

Cos45/
sec30+cosec30

Answers

Answered by anjum187
31

Hlo

here is the solution

from the trignometric ratios cos45=1/root 2

sec30=2/root3

cose

HERE IT IS

Attachments:

mustafeez51: wronf
mustafeez51: wrong
mustafeez51: rationalise the answer and send me
Answered by Anonymous
13

\huge\tt\red{\frac{ \cos45° }{ \sec30° +  \cosec30°  }}

\longrightarrow\huge\tt\purple{\frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3}  } + 2 }}

\longrightarrow\huge\tt\purple{ \frac{ \frac{1}{2} }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } } }

\longrightarrow\huge\tt\purple{ \frac{ \sqrt{3} }{ \sqrt{2(2 + 2 \sqrt{3}) } } }

\longrightarrow\huge\tt\purple{\frac{ \sqrt{3} }{2 \sqrt{2} + 2 \sqrt{6}  } }

\longrightarrow\huge\tt\purple{\frac{ \sqrt{3(2 \sqrt{6} - 2 \sqrt{2})  } }{(2 \sqrt{6}  + 2 \sqrt{2} )(2 \sqrt{6} - 2 \sqrt{2} ) } }

\longrightarrow\huge\tt\purple{ \frac{2 \sqrt{3}( \sqrt{6}  -  \sqrt{2})  }{ {(2 \sqrt{6} )}^{2} -  {(2 \sqrt{2} )}^{2}  } }

\longrightarrow\huge\tt\purple{\frac{2 \sqrt{3}( \sqrt{6}  -  \sqrt{2}  )}{24 - 8} }

\longrightarrow\huge\tt\purple{ \frac{2 \sqrt{3}( \sqrt{6} -  \sqrt{2} )  }{16} }

\longrightarrow\huge\tt\purple{\frac{ \sqrt{18} -  \sqrt{6}  }{8} }

\longrightarrow\huge\tt\purple{\frac{3 \sqrt{2}  -  \sqrt{6} }{8} }

Similar questions