Math, asked by hitendrav746, 7 months ago

а) Cosec² 45° + tan² 45° _ 3 sin² 90°​

Answers

Answered by sandeep665211
0

Answer:

Given Equation : sin² 30° + sin² 45° + sin² 60° + sin² 60° + sin² 90°

Solution : -

Method 1 ( By using identities )

⇒ sin² 30° + sin² 45° + sin² 60° + sin² 60° + sin² 90°

⇒ sin²30 + sin²45 + sin²( 90 - 30 ) + sin²60 + sin²90

⇒ sin²30 + sin²45 + cos²30 + sin²60 + sin²90

⇒ sin²30 + cos²30 + sin²45 + sin²60 + sin²90

⇒\bold{1} + \bigg( \dfrac{1}{\sqrt{2}} \bigg)^{2} + \bigg(\dfrac{\sqrt{3}}{2} \bigg)^{2} + ( 1 )^{2}1+(

2

1

)

2

+(

2

3

)

2

+(1)

2

⇒ 1 + \dfrac{1}{2} + \dfrac{3}{4} + 1

2

1

+

4

3

+1

⇒ 1 + 1 + \dfrac{2+3}{4}

4

2+3

⇒ 2 + \dfrac{5}{4}

4

5

⇒ \dfrac{8+5}{4}

4

8+5

⇒ \dfrac{13}{4}

4

13

Method 2 ( By using trigonometric table only )

⇒ sin² 30° + sin² 45° + sin² 60° + sin² 60° + sin² 90°

⇒ sin² 30° + sin² 45° + 2sin² 60° + sin² 90°

⇒ \bigg( \dfrac{1}{2} \bigg)^{2}+ \bigg(\dfrac{1}{\sqrt{2}} \bigg)^{2} +2 \bigg( \dfrac{\sqrt{3}}{2} \bigg)^{2} + 1(

2

1

)

2

+(

2

1

)

2

+2(

2

3

)

2

+1

⇒ \dfrac{1}{4} +\dfrac{1}{2} + \dfrac{3}{2} + 1

4

1

+

2

1

+

2

3

+1

⇒ \dfrac{1 + 2 + 6 + 4}{4}

4

1+2+6+4

⇒ \dfrac{13}{4}

4

13

Therefore the value of sin² 30° + sin² 45° + sin² 60° + sin² 60° + sin² 90° is \dfrac{13}{4}

4

13

Similar questions