Math, asked by likhitaishu3, 10 months ago

Cot-1 ( √1+sinx +√ 1-sinx / √1+sinx -√ 1-sinx )= x/2 , x∈(0, π/4)

Answers

Answered by kiyara01
5

hope it will help you

mark as brainlest answer please

Attachments:
Answered by sandy1816
0

{cot}^{ - 1} ( \frac{ \sqrt{1 + sinx} +  \sqrt{1 - sinx}  }{ \sqrt{1 + sinx} -  \sqrt{ 1 - sinx}  } ) \\  \\  =  {cot}^{ - 1} ( \frac{ \sqrt{( {cos \frac{x}{2} + sin \frac{x}{2}  })^{2} } +  \sqrt{( {cos \frac{x}{2} - sin \frac{x}{2}  })^{2} }  }{ \sqrt{( {cos \frac{x}{2}  + sin \frac{x}{2}  })^{2} }  -  \sqrt{( {cos \frac{x}{2}  - sin \frac{x}{2} })^{2}  }  } ) \\  \\  =  {cot}^{ - 1} ( \frac{cos \frac{x}{2}  + sin \frac{x}{2}  + cos \frac{x}{2}  - sin \frac{x}{2} }{cos \frac{x}{2}  + sin \frac{x}{2}  - cos \frac{x}{2}  + sin \frac{x}{2} } ) \\  \\  =  {cot}^{ - 1} ( \frac{2cos \frac{x}{2} }{2sin \frac{x}{2} } ) \\  \\  =  {cot}^{ - 1} cot \frac{x}{2}  \\  \\  =  \frac{x}{2}

Similar questions