India Languages, asked by djhaider70, 11 months ago

cot^2 A((secA-1)/(1+sinA)) + ((sinA-1)/(1+secA))=0 என்பதை நிருபி

Answers

Answered by pawarshreyash99
0

Explanation:

cot^2 A((secA-1)/(1+sinA)) + ((sinA-1)/(1+secA))=0 என்பதைright andwer

Answered by steffiaspinno
1

விளக்கம்:

\cot ^{2} A\left(\frac{\sec A-1}{1+\sin A}\right)+\sec ^{2} A\left(\frac{\sin A-1}{1+\sec A}\right)=0

இடப்பக்கம்

\cot ^{2} A\left(\frac{\sec A-1}{1+\sin A}\right)+\sec ^{2} A\left(\frac{\sin A-1}{1+\sec A}\right)

\cot ^{2} A(\sec A-1)(1+\sec A)+ \sec ^{2} A(\sin A-1)(s i n A+1)/(1+\sin A)(1+\sec A)

=\frac{\cot ^{2} A\left(\sec ^{2} A-1\right)+\sec ^{2} A\left(\sin ^{2} A-1\right)}{(1+\sin A)(1+\sec A)}

sec^2A - 1 = tan^2A

=\frac{\cot ^{2} A\left(\tan ^{2} A\right)+\sec ^{2} A\left(\sin ^{2} A-1\right)}{(1+\sin A)(1+\sec A)}

=\frac{\cot ^{2} A \cdot \tan ^{2} A-\sec ^{2} A\left(1-\sin ^{2} A\right)}{(1+\sin A)(1+\sec A)}

tan^2A= \frac{1}{cot^2 A}

=\frac{\cot ^{2} A \cdot \frac{1}{\cot ^{2} A}-\sec ^{2} A \cdot \cos ^{2} A}{(1+\sin A)(1+\sec A)}

=\frac{1-\sec ^{2} A \cdot \frac{1}{\sec ^{2} A}}{(1+\sin A)(1+\sec A)}

=\frac{1-1}{(1+\sin A)(1+\sec A)}

= \frac{0}{(1+\sin A)(1+\sec A)}

= 0 = வலப்பக்கம்

\cot ^{2} A\left(\frac{\sec A-1}{1+\sin A}\right)+\sec ^{2} A\left(\frac{\sin A-1}{1+\sec A}\right)=0 என நிரூபிக்கப்பட்டது.

Similar questions