Cot²A - Sin² A = tan² A Sin ²A prove it
Answers
Answered by
1
Answer:Hey !!
LHS = ( 1 + 1/tan² A ) + ( 1 + 1/Cot²A )
= ( 1 + Cot²A ) ( 1 + Tan²A )
=> Cosec²A × Sec²A
=> 1/Sin²A × 1/Cos²A
=> 1/Sin²A Cos²A
=> 1/Sin²A ( 1 - Sin²A )
=> 1/ Sin²A - Sin⁴A ) = RHS
Hence,
LHS = RHS = 1/ Sin² A - Sin⁴A .
HOPE it helped u
Similar questions