Math, asked by KrishnVasudev, 2 months ago

cotA/1-tanA + tanA/1-cotA = 1+tanA+cosA​

Answers

Answered by mathdude500
6

Appropriate Question :-

Prove that

 \boxed{ \sf{ \frac{cotA}{1 - tanA} +  \frac{tanA}{1 - cotA} = 1 + tanA + cotA}}

\large\underline{\sf{Solution-}}

Consider,

\rm \:  =  \: \dfrac{cotA}{1 - tanA}  + \dfrac{tanA}{1 - cotA}

We know,

 \boxed{ \sf{cotA =  \frac{1}{tanA}}}

Using this, we get

\rm \:  =  \: \dfrac{1}{tanA(1 - tanA)}  + \dfrac{tanA}{1 - \dfrac{1}{tanA} }

\rm \:  =  \: \dfrac{1}{tanA(1 - tanA)}  + \dfrac{tanA}{ \:  \:  \: \dfrac{tanA - 1}{tanA}  \:  \:  \: }

\rm \:  =  \: \dfrac{1}{tanA(1 - tanA)}  + \dfrac{tan^{2} A}{ \:  \:  \: tanA - 1  \:  \:  \: }

\rm \:  =  \: \dfrac{1}{tanA(1 - tanA)}   -  \dfrac{tan^{2} A}{ \:  \:  \: 1 - tanA  \:  \:  \: }

\rm \:  =  \: \dfrac{1 -  {tan}^{3}A }{tanA(1 - tanA)}

We know that,

 \boxed{ \sf{ {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}}}

So, using this

\rm \:  =  \: \dfrac{(1 -  {tan}A)(1 + tanA +  {tan}^{2}A)}{tanA(1 - tanA)}

\rm \:  =  \: \dfrac{1 + tanA +  {tan}^{2}A}{tanA}

\rm \:  =  \: \dfrac{1}{tanA}  + \dfrac{tanA}{tanA}  + \dfrac{ {tan}^{2} A}{tanA}

\rm \:  =  \: cotA + 1 + tanA

\rm \:  =  \: 1 + tanA + cotA

Hence,

 \boxed{ \bf{ \frac{cotA}{1 - tanA} +  \frac{tanA}{1 - cotA} = 1 + tanA + cotA}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by harsi18kaur
2

Answer:

hello dear

Step-by-step explanation:

how are you

my name is simar

your intro

Similar questions