CotA+cotB+cotC=√3 prove triangle ABC equlateral triangle
Answers
Answered by
18
In an equilateral triangle
A=B=C
so
A+B+C= λ
A=B=C= λ/3
A=B=C
so
A+B+C= λ
A=B=C= λ/3
Therefore,
cot A + cot B + cot C = cot λ/3 + cot λ/3 + cot λ/3
= 1/√3 + 1/√3 + 1/√3
= 3/√3
= √3
Similar questions