cross multiplication method ax +by=c and bx+ay= 1+c
Answers
Answered by
2
Given, ax + by = c ..............1
and bx + ay = 1 + c ..............2
Multiplied by b in equation 1 and a in equation 2, we get
abx + b2 y = bc ..................3
abx + a2 y = a + ac ..............4
Subtract equation 3 and 4, we get
b2 y - a2 y = bc - a - ac
=> (b2 - a2 )y = (bc - a - ac)
=> y = (bc - a - ac)/(b2 - a2 )
From equation 1, we get
ax + b * (bc - a - ac)/(b2 - a2 ) = c
=> ax = c - b * (bc - a - ac)/(b2 - a2)
=> ax = c - (b2 c - ab - abc)/(b2 - a2)
=> ax = {c(b2 - a2 ) - (b2 c - ab - abc)}/(b2 - a2 )
=> ax = {cb2 - ca2 - b2 c + ab - abc)}/(b2 - a2 )
=> x = {cb2 - ca2 - b2 c + ab - abc)}/{a(b2 - a2 )}
and bx + ay = 1 + c ..............2
Multiplied by b in equation 1 and a in equation 2, we get
abx + b2 y = bc ..................3
abx + a2 y = a + ac ..............4
Subtract equation 3 and 4, we get
b2 y - a2 y = bc - a - ac
=> (b2 - a2 )y = (bc - a - ac)
=> y = (bc - a - ac)/(b2 - a2 )
From equation 1, we get
ax + b * (bc - a - ac)/(b2 - a2 ) = c
=> ax = c - b * (bc - a - ac)/(b2 - a2)
=> ax = c - (b2 c - ab - abc)/(b2 - a2)
=> ax = {c(b2 - a2 ) - (b2 c - ab - abc)}/(b2 - a2 )
=> ax = {cb2 - ca2 - b2 c + ab - abc)}/(b2 - a2 )
=> x = {cb2 - ca2 - b2 c + ab - abc)}/{a(b2 - a2 )}
Similar questions