Math, asked by dxboy260, 16 days ago

Define Loga 5=3 then ?​

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Correct Question}:}}

  • If logₐ(5) = 3 then find the value of a.

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto log_{a}(5)  = 3

By definition of logarithm:

 \rm: \longmapsto { \alpha }^{ \beta }  =  \gamma \:  \: or \:  \:  log_{ \alpha }( \gamma)  =  \beta

Therefore:

 \rm: \longmapsto {a}^{3}  = 5

 \rm: \longmapsto a =  \sqrt[ \rm3]{ \rm5}

★ Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions