Physics, asked by rohithnaikbanoth, 4 months ago

② Derive expression for displacement and time taken
for a body to come to rest on a rough horizontal
surface?​

Answers

Answered by nirman95
3

Derivation:

  • Let's assume that initial velocity of body is u, coefficient of friction is \mu, and mass of body is m.

Now, let time taken to stop be t:

 \sf \: v = u + at

 \sf  \implies\: 0 = u +( -  \mu g)t

 \sf  \implies\: 0 = u  -   \mu gt

 \sf  \implies\: t =  \dfrac{u}{ \mu g}

Now, displacement be d :

 \sf \:  {v}^{2}  =  {u}^{2}  + 2ad

 \sf  \implies\:  {0}^{2}  =  {u}^{2}  + 2( -  \mu g)d

 \sf  \implies\:  2 \mu gd =  {u}^{2}

 \sf  \implies\: d =   \dfrac{{u}^{2} }{2 \mu g}

Hope It Helps.

Answered by krohit68272
0

Explanation:

Derivation:</p><p></p><p>Let's assume that initial velocity of body is u, coefficient of friction is \muμ , and mass of body is m.</p><p></p><p>Now, let time taken to stop be t:</p><p></p><p>\sf \: v = u + atv=u+at</p><p></p><p>\sf \implies\: 0 = u +( - \mu g)t⟹0=u+(−μg)t</p><p></p><p>\sf \implies\: 0 = u - \mu gt⟹0=u−μgt</p><p></p><p>\sf \implies\: t = \dfrac{u}{ \mu g}⟹t=μgu</p><p></p><p>Now, displacement be d :</p><p></p><p>\sf \: {v}^{2} = {u}^{2} + 2adv2=u2+2ad</p><p></p><p>\sf \implies\: {0}^{2} = {u}^{2} + 2( - \mu g)d⟹02=u2+2(−μg)d</p><p></p><p>\sf \implies\: 2 \mu gd = {u}^{2}⟹2μgd=u2</p><p></p><p>\sf \implies\: d = \dfrac{{u}^{2} }{2 \mu g}⟹d=2μgu2</p><p></p><p>Hope It Helps.</p><p></p><p>

Similar questions