Math, asked by geniusmathematician, 9 days ago

DERIVE THE HERON'S FORMULA
 \sqrt{s(s - a)(s - b)(s - c)}
CORRECT SOLUTION WILL BE MARKED AS BRAINLIEST ANSWER​

Answers

Answered by user0888
120

\large\text{\underline{Required}}

Heron's formula.

\large\text{\underline{Solution}}

Let's consider a triangle \triangle ABC.

First, we are going to clarify the equation by using some letters.

  • a\text{, the opposite side of the angle }\angle A
  • b\text{, the opposite side of the angle }\angle B
  • c\text{, the opposite side of the angle }\angle C

\large\text{\underline{Step 1. Al-Kashi's law of cosines}}

According to Al-Kashi's law of cosines, two sides and an angle is required to find the remaining side.

\implies a^{2}=b^{2}+c^{2}-2bc\cos\angle A

\implies b^{2}=c^{2}+a^{2}-2ca\cos\angle B

\implies c^{2}=a^{2}+b^{2}-2ab\cos\angle C

Let's choose one of the equations.

\red{\bigstar}a^{2}=b^{2}+c^{2}-2bc\cos\angle A\text{ (Al-Kashi's law of cosines)}

\large\text{\underline{Step 2. Area of a triangle}}

The basis of the following starts from this equation.

\implies\triangle ABC=\dfrac{1}{2}bh

As we can find the height by using the value of \sin values, the following formula is derived.

\implies\triangle ABC=\dfrac{1}{2}ab\sin\angle C

\implies\triangle ABC=\dfrac{1}{2}bc\sin\angle A

\implies\triangle ABC=\dfrac{1}{2}ca\sin\angle B

We can find the area of the triangle when we are given two sides and the contained angle.

\red{\bigstar}\triangle ABC=\dfrac{1}{2}bc\sin\angle A\text{ (Area of a triangle)}

\large\text{\underline{Step 3. Trigonometric identity}}

This is the most complicated step in the answer, so please read carefully.

We here need to find the value of \sin\angle A, since we need to find the area.

The chosen equation gives the following.

\implies \cos\angle A=\dfrac{b^{2}+c^{2}-a^{2}}{2bc}

\implies \cos^{2}\angle A=\left(\dfrac{b^{2}+c^{2}-a^{2}}{2bc}\right)^{2}

This becomes,

\implies1-\sin^{2}\angle A=\left(\dfrac{b^{2}+c^{2}-a^{2}}{2bc}\right)^{2}

Manipulating the equations we get,

\implies\sin^{2}\angle A=1-\left(\dfrac{b^{2}+c^{2}-a^{2}}{2bc}\right)^{2}

Further becomes,

\implies\sin^{2}\angle A=(1+\dfrac{b^{2}+c^{2}-a^{2}}{2bc})(1-\dfrac{b^{2}+c^{2}-a^{2}}{2bc})

\implies\sin^{2}\angle A=(\dfrac{b^{2}+2bc+c^{2}-a^{2}}{2bc})(\dfrac{a^{2}-b^{2}+2bc-c^{2}}{2bc})

\implies \sin^{2}\angle A=\dfrac{(b+c)^{2}-a^{2}}{2bc}\times\dfrac{a^{2}-(b-c)^{2}}{2bc}

\implies \sin^{2}\angle A=\dfrac{(b+c+a)(b+c-a)}{2bc}\times\dfrac{(a-b+c)(a+b-c)}{2bc}

\implies \sin\angle A=\dfrac{\sqrt{(b+c+a)(b+c-a)(a-b+c)(a+b-c)}}{2bc}

Now, Step 3 is finished.

\red{\bigstar}\sin\angle A=\dfrac{\sqrt{(b+c+a)(b+c-a)(a-b+c)(a+b-c)}}{2bc}

\large\text{\underline{Step 4. Integrating Step 2, Step 3}}

According to the area of a triangle and \sin\angle A, we can find the area of the triangle.

\implies\triangle ABC=\dfrac{1}{2}\times bc\sin\angle A

\implies \triangle ABC=\dfrac{1}{2}\times bc\times\dfrac{\sqrt{(b+c+a)(b+c-a)(a-b+c)(a+b-c)}}{2bc}

\implies \triangle ABC=\dfrac{1}{4}\times\sqrt{(b+c+a)(b+c-a)(a-b+c)(a+b-c)}

Distributing fractions into the square root,

\implies \triangle ABC=\sqrt{\dfrac{(b+c+a)(b+c-a)(a-b+c)(a+b-c)}{16}}

\implies \triangle ABC=\sqrt{\dfrac{b+c+a}{2}\times\dfrac{b+c-a}{2}\times\dfrac{a-b+c}{2}\times\dfrac{a+b-c}{2}}

For the semi-perimeter, we have s=\dfrac{a+b+c}{2}.

\implies \triangle ABC=\sqrt{s(s-a)(s-b)(s-c)}

Now, here is our result.

\red{\bigstar}\triangle ABC=\sqrt{s(s-a)(s-b)(s-c)}

\large\text{\underline{Conclusion}}

The area of a triangle which sides are a,b,c and the semi-perimeter s=\dfrac{a+b+c}{2} is \sqrt{s(s-a)(s-b)(s-c)}. (Heron's formula)

Attachments:
Answered by eshivasinghmohan
48

Answer:

given :

  • DERIVE THE HERON'S FORMULA
  •  \sqrt{s(s - a)(s - b)(s - c)}

to find :

  • [tex] \sqrt{s(s - a)(s - b)(s - c)} [/tex

solution :

  • 2(s-a)=- a+b+c

  • 2(s-b) a-b+c => 2[s-c) = a +b-c

  • Let p+q=cas indicated.

  • Then, ha-p² (1)

  • Also, h²=b²-q²

  • From (i) and (i)

  • a-p²b²q²

  • =q² =-a²+p²b²

  • Since, q=c-pq²(cp)²q²c²+p²-2pc

  • Then, +p²-2pc-a²+p²+b²

  • 2p = a+ b- c = ( a - b + c)

  • h²= (a-p) (a+p)

  • h²= (a-(a²-b+c)/2c) (a+(ab+c)/2c)

  • h² = ((2ac-a²+ b² /2c)x((2ac+ a²b²+ c/2c)

  • h²((b-(ac)²(a + c)²-b²/4c²

  • h =((b-a+c) (b+a- c)(a+c+ b)(a +c-b)

  • h²=(2[s-a) x 2[s-c) x 25 x2(s-b))/4c²

  • h²=14s (s-a) x (s-c) x[s-b))/c²
Similar questions