Math, asked by Thatsomeone, 1 year ago

derive the quadratic formula

Answers

Answered by AwesomeArya
17
ʜᴇy ᴜꜱᴇʀ

ʜᴇʀᴇ ɪꜱ yᴏᴜʀ ᴀɴꜱᴡᴇʀ :-

----------------------------------------------------------

a {x}^{2}  + bx + c = 0 \\  \\  {x}^{2}  +  \frac{b}{a} x +  \frac{c}{a}  = 0 \:  \:  \:  \:  \:  \:  \:  \: dividing \: by \: a \:  \\  \\  {x}^{2}  +  \frac{b}{a} x + { (\frac{b}{2a} )}^{2}   -  {( \frac{b}{2a}) }^{2}  + \frac{c}{a}  = 0 \\  \\  {(x +  \frac{b}{2a} }^{2}  -   \frac{ {b}^{2} }{4 {a}^{2} }  +  \frac{c}{a}  \\  \\  {(x +  \frac{b}{2a} }^{2}  -  \frac{ {b}^{2} - 4ac }{4 {a}^{2} }  = 0 \\  \\ x +  \frac{b}{2a}  =  \sqrt{ \frac{ {b}^{2} - 4ac }{4 {a}^{2} } }  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \: x +  \frac{b}{2a}  =  -  \sqrt{ \frac{ {b}^{2} - 4ac }{4 {a}^{2} } }  \\  \\ x =  -  \frac{b}{2a}  +  \frac{ \sqrt{ {b}^{2} - 4ac } }{2a}  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \: x =  -  \frac{b}{2a}  -  \frac{ \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ x =  \frac{ - b +  -  \sqrt{ {b}^{2} - 4ac } }{2a}

ʜᴀᴠᴇ ᴀ ɴɪᴄᴇ ᴅᴀy

Thatsomeone: thanks
Answered by TANU81
23
♥️Hi there ♥️

1.Write the quadratic eqn in its standard form ;

 {ax}^{2} + bx + c = 0 \:
where a ≠ 0

2.Divide it by 'a'
 \frac{ {ax}^{2} }{a} + \frac{b}{a} x + \frac{c}{a} = 0

So it will become
 {x}^{2} + \frac{b}{a} x + \frac{c}{ \:a} = 0

3.Now take coefficient of x that is b/a and multiply b/a by 1/2 so will get b/2a .

4.Add and subtract (b/2a)² that is b²/4a² in x²+b/a.x + c/a to convert in the form of :-

 {x}^{2} + \frac{b}{a} x + \frac{c}{a} + \frac{ {b}^{2} }{4 {a}^{2} } - \frac{ {b}^{2} }{4 {a}^{2} } = 0 -(1)

5. Now re write :- eq (1) in the form of ;-

 {x}^{2} + \frac{b}{a} x + \frac{ {b}^{2} }{4 {a}^{2} } = \frac{ {b}^{2} }{4 {a}^{2} } - \frac{c}{a}

6 .Simplify it to (x+ b/ 2a)² = b²-4ac / 4a².

7.Take a square root on both the sides to get.

 \sqrt{(x + \frac{ {b} }{2a} ) {}^{2} }

 = \sqrt{ \frac{ { {b}^{2} - 4ac}^{} }{4 {a}^{2} } } \: = x + \frac{b}{2a}

= ± √b^2- 4ac /2a

8.Finally we get two values that is quadratic equation.

Thanks ✋

Hope it's right.

TANU81: See, its by completing the square root.^_^
TANU81: Thanks !
AwesomeArya: thanks
Thatsomeone: thanks
TANU81: Welcome ^_^ Thx for brainliest
Thatsomeone: ☺.
Similar questions