Determine all natural numbers x, y and z such that x < y < z, and xyz + xy + xz + yz + x + y +2+1 = 2020
Answers
Answer:
Step-by-step explanation:
Knowing that x, y and z are natural numbers, we look for the possible factors of 2020:
they are : 1,2,2,5,101
so possible combination of (x,y,z) are : (2,10,101),(4,5,101),(2,5,202),(2,2,505)
Given : xyz + xy + xz + yz + x + y +z+1 = 2020
natural numbers x, y and z such that x < y < z
To Find : Determine all natural numbers satisfying the given condition
Solution:
xyz + xy + xz + yz + x + y +z+1 = 2020
=> xyz + xy + xz + x + yz + y +z+1 = 2020
=> xy(z + 1) + x(z + 1) + y(z + 1) + 1(z + 1) = 2020
=> (z + 1)(xy + x + y + 1) = 2020
=> (z + 1)(x(y + 1) + 1(y + 1)) = 2020
=> (x + 1)(y + 1)(z +1) = 2020
2020 = 2 * 2 * 5 * 101
x + 1 y + 1 z + 1
2 5 202
2 10 101
4 5 101
Hence x , y , z are
x y z
1 4 201
1 9 100
3 4 100
(1 , 4 , 201) , (1 , 9 , 100) and ( 3 , 4 , 100)
Verification :
xyz + xy + xz + yz + x + y +z+1 = 2020
(1 , 4 , 201)
LHS
1 * 4 * 201 + 1 * 4 + 1 * 201 + 4 * 201 + 1 + 4 + 201 + 1
= 804 + 4 + 201 + 804 + 207
= 2020
Similarly for others
(x , y , z ) = (1 , 4 , 201) , (1 , 9 , 100) and ( 3 , 4 , 100)
Learn More:
If the ordered triplets of real numbers (x, y, z) satisfy √x-y+z=√x ...
brainly.in/question/18708970
The number of triples (x, y, z) such that any one of these numbers is ...
brainly.in/question/13612444