Physics, asked by biptisma69, 1 year ago

determine th e electric intensity due to a long wire of uniform intensity charge density

Answers

Answered by Anonymous
4

Question:

  • Determine the electric field intensity at any point on the axis of a uniformly charged long wire having uniform charge density.

Answer:

\large\bold\red{E =  \frac{  \lambda}{4\pi \epsilon_ {0}  }   \:  \frac{l}{a(l + a)} }

Explanation:

Let the length of wire be l.

And,

It's linear charge density be \bold{\lambda}.

\bold\purple{Note:-}Refer\: to\; the\: attachment\: for\: figure

Now,

Consider an element ‘dx’ at a distance x from the point P, where we seek to find the electric field.

Therefore,

The elemental charge ,

 \boxed{  \bold{dq =  \lambda \: dx}}

Therefore,

We have,

 =  > dE = k  \: \frac{ \lambda \: dx}{ {x}^{2} }

Integrating both the sides,

We get,

 =  >  \displaystyle\int \: dE = k \lambda \:  \displaystyle \int \limits_ {a}^{a + l}  \frac{1}{ {x}^{2} } dx \\\\  \\  =  > E =     \displaystyle{k \lambda| - \frac{1}{x} |  \displaystyle{_{a}^{a + l} }} \\ \\ \\  =  > E = k \lambda(-  \frac{1}{a + l }  +  \frac{1}{a} ) \\ \\ \\  =  > E =  \frac{  \lambda}{4\pi \epsilon_ {0}  }  \:  ( \frac{1}{a}  -  \frac{1}{l + a} ) \\\\  \\ =  > \large \boxed{ \bold{ E =  \frac{  \lambda}{4\pi \epsilon_ {0}  }   \:  \frac{l}{a(l + a)} }}

Attachments:
Similar questions