Math, asked by dekiy42, 5 months ago

Determine the total surface area of a sphere with the diameter of 32cm.​

Answers

Answered by Bidikha
38

Given-

  • Diameter (d) of sphere =32cm

To find -

  • Total surface area of a sphere

Solution -

Diameter (d) of sphere = 32cm

Therefore, radius of sphere = 32/2 = 16cm

We know that,

Total surface area of sphere = 4πr²

Now,

Assuming value of π = 22/7

Total  \: surface \:  \:  area \:  of  \: sphere = 4 \times  \frac{22}{7}  \times  {16}^{2}

Total \:  \:  surface  \:  \: area  \: of  \: sphere = 4 \times  \frac{22}{7}  \times 256

Total  \:  \: surface  \: area  \: of \:  sphere =  \frac{22528}{7}

Total  \:  \: surface  \:  \: area \:  of  \: sphere = 3218.285...

Total \:  surface  \: area  \: of \:    sphere = 3218.29 \:  {cm}^{2} (approx)

Related Formulae -

1) Volume of sphere = 4/3 πr³

2) Surface area of sphere = 4πr²

3) Volume of hemisphere = 2/3πr³

4) Total surface area of hemisphere = 3πr²

Answered by HA7SH
118

Step-by-step explanation:

______________________________

\bf{\bigstar} \text{\Large\underline{\sf{Question:-}}}

\hookrightarrow ● Determine the total surface area of a sphere with the diameter of 32cm.

\bf{\bigstar} \text{\Large\underline{\sf{To\ find:-}}}

\hookrightarrow ● We have to find the total surface area of the sphere.

\bf{\bigstar} \text{\Large\underline{\sf{Given:-}}}

\hookrightarrow ● Diameter [d] of sphere = 32cm.

\bf{\bigstar} \text{\Large\underline{\sf{Solution:-}}}

\hookrightarrow The diameter of the sphere = 32cm.

\bf{\bigstar} \text{\Large\underline{\sf{Then\ radius:-}}}

\hookrightarrow  \mathsf{Radius\ =\ \dfrac{32}{2}}

\hookrightarrow  \mathsf{Radius\ =\ 16cm.} \red{\bigstar}

\bf{\bigstar} \text{\Large\underline{\sf{Well,\ we\ know\ that:-}}}

 \mathrm\pink{The\ total\ surface\ area\ of\ sphere\ =\ 4\ \pi\ r².}

\bf{\bigstar} \text{\large\underline{\sf{According\ to\ the\ question:-}}}

\hookrightarrow  \mathsf{Total\ surface\ area\ of\ sphere\ =\ 4\ ×\ \dfrac{22}{7}\ ×\ 16²}

\hookrightarrow  \mathsf{=\ 4\ ×\ \dfrac{22}{7}\ ×\ 256}

\hookrightarrow  \mathsf{=\ \dfrac{22528}{7}}

\hookrightarrow  \mathsf{=\ 3218.285...}

\therefore  \mathsf{Hence,\ the\ total\ surface\ area\ of\ the\ sphere\ is\ 3218.29cm²\ (approx).}

\bf{\bigstar} \text{\Large\underline{\sf{More\ to\ know:-}}}

\hookrightarrow  \mathsf{Total\ surface\ area\ of\ a\ cylinder\ =\ 2\ \pi\ r\ (r\ +\ h).}

\hookrightarrow  \mathsf{Total\ surface\ area\ of\ a\ cone\ =\ \pi\ rl\ +\ \pi\ r²\ =\ \pi\ r(l\ +\ r).}

\hookrightarrow  \mathsf{Total\ surface\ area\ of\ a\ hemisphere\ =\ 3\ \pi\ r².}

______________________________

Similar questions