Math, asked by shivvv42, 7 months ago

Determine the value of k for which the system of linear equations has infinitely many solution.
(k-3)x+3y = k
kx + ky = 12​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
7

Answer:-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

(k-3)x + 3y = k

kx + ky = 12

Rearranging the terms:-

\longrightarrow(k-3)x + 3y - k = 0

\longrightarrow kx + ky - 12 = 0

We have,

a_1 = (k - 3)

b_1 = 3

c_1 = - k

• Second Situation:-

\implies kx + ky = 12

\implies kx + ky - 12 = 0

We have,

a_2 = k

b_2 = k

c_2 = -12

• For Infinite solution :-

\bf\boxed{\dfrac{a_{1}}{a_{2}}=\dfrac{b_{1}}{b_{2}}=\dfrac{c_{1}}{c_{2}}}

\implies{\dfrac{k-3}{k}=\dfrac{3}{k}=\dfrac{k}{12}}

• Taking third Situation:-

{\dfrac{k-3}{k}=\dfrac{3}{k}}

\longrightarrow k(k - 3) = 3k

\longrightarrow k^2 - 3k = 3k

\longrightarrow k^2 = 6k

\bf\implies{k = 6}

• Taking fourth Situation:-

{\dfrac{3}{k}=\dfrac{6}{12}}

\longrightarrow 36 = 6k

\longrightarrow{\dfrac{36}{6}=k}

\longrightarrow\cancel{\dfrac{36}{6}}=k

\bf\implies{k = 6}

• Taking fifth Situation:-

{\dfrac{k-3}{k}=\dfrac{k}{12}}

\longrightarrow 12k - 36 = k^2

\longrightarrow k^2 - 12k + 36 = 0

\longrightarrow(k - 6)^2 = 0

\bf\implies{k = 6}

\therefore Therefore,

We get Infinite Solutions.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions