Difference in echinococcus granulosus and echinococcus multilocularis
Answers
Answered by
12
Alveolar and cystic echinococcoses, caused by the metacestodes of Echinococcus multilocularis and E. granulosus, are prevalent in several regions and invoke deleterious zoonotic helminthiases. Hydatid fluid (HF), which contains proteinaceous and non-proteinaceous secretions of the parasite- and host-derived components, critically affects the host-parasite interplay and disease progression. We conducted HF proteome profiling of fully mature E. multilocularis vesicle (nine months postinfection) and E. granulosus cyst (stage 2). We identified 120 and 153 proteins, respectively, in each fluid. Fifty-six and 84 proteins represented distinct species; 44 and 66 were parasites, and 12 and 18 were host-derived proteins. The five major parasite protein populations, which included antigen B isoforms, metabolic enzymes, proteases and inhibitors, extracellular matrix molecules (ECMs), and developmental proteins, were abundantly distributed in both fluids and also exclusively in one sample or the other. Carbohydrate-metabolizing enzymes were enriched in E. granulosus HF. In the E. multilocularis HF, proteins that constitute ECMs, which might facilitate adhesion and cytogenesis, were highly expressed. Those molecules had physical and functional relationships along with their biochemical properties through protein-protein interaction networks. Twelve host-derived proteins were largely segregated to serum components. The major proteins commonly and uniquely detected in these HFs and their symbiotic interactome relationships might reflect their biological roles in similar but distinct modes of maturation, invasion, and the longevity of the parasites in the hosts.
Keywords: alveolar echinococcosis, cystic echinococcosis, hydatid fluid, proteome, protein-protein interaction networks
INTRODUCTION
Echinococcosis refers to a disease complex caused by the metacestodes of the genus Echinococcus. More than seven Echinococcus spp., such as E. granulosus (G1), E. ortleppi (G4), E. canadensis (G6, 7, 8, and 10), E. oligathus, E. vogeli, and E. multilocularis, trigger human infections, among which E. granulosus and E. multilocularis are the most important pathogenic species [1]. Humans serve as intermediate hosts and are infected with the larval stage of the worms. When humans incidentally ingest parasite eggs, oncospheres hatched out from the eggs are activated in the small intestine. The oncospheres are released into the bloodstream and mostly end up lodged in the liver. The parasites grow into unilocular and multilocular cystic masses that result in cystic echinococcosis (CE) and alveolar echinococcosis (AE) [1].
CE is prevalent in nomadic areas in association with dog-rearing environments [2]. AE is increasingly detected in high-altitude forested and pastoral areas in the Northern Hemisphere, which includes enclaves in Europe, central Asia, and northwestern China [3, 4]. CE and AE are the most deleterious enzootic diseases and have a great impact on disability-adjusted life years [4, 5]. These larval cestodiases exemplify the top-ranking entities among the neglected tropical diseases by the World Health Organization due to their significant disease burden and associated socioeconomic losses (http://who.int/neglected_diseases/diseases/en/).
Echinococcus granulosus and E. multilocularis are the nearest phylogenetic neighbors in the family Taeniidae [6]: the two organisms share multiple aspects of growth and developmental plasticity and similarities in their intermediate and definitive hosts. The genomes of these two parasites each comprise approximately 115 megabases and show 96% sequence identity within the coding regions [7, 8]. They display the unique expansion of similar gene families that specialize in nutrient uptake from the host and protection from host defensive system [8]. Interestingly, they differ markedly in their biological features, such as morphological characteristics during growth and development, and invasion into adjacent tissues w
Keywords: alveolar echinococcosis, cystic echinococcosis, hydatid fluid, proteome, protein-protein interaction networks
INTRODUCTION
Echinococcosis refers to a disease complex caused by the metacestodes of the genus Echinococcus. More than seven Echinococcus spp., such as E. granulosus (G1), E. ortleppi (G4), E. canadensis (G6, 7, 8, and 10), E. oligathus, E. vogeli, and E. multilocularis, trigger human infections, among which E. granulosus and E. multilocularis are the most important pathogenic species [1]. Humans serve as intermediate hosts and are infected with the larval stage of the worms. When humans incidentally ingest parasite eggs, oncospheres hatched out from the eggs are activated in the small intestine. The oncospheres are released into the bloodstream and mostly end up lodged in the liver. The parasites grow into unilocular and multilocular cystic masses that result in cystic echinococcosis (CE) and alveolar echinococcosis (AE) [1].
CE is prevalent in nomadic areas in association with dog-rearing environments [2]. AE is increasingly detected in high-altitude forested and pastoral areas in the Northern Hemisphere, which includes enclaves in Europe, central Asia, and northwestern China [3, 4]. CE and AE are the most deleterious enzootic diseases and have a great impact on disability-adjusted life years [4, 5]. These larval cestodiases exemplify the top-ranking entities among the neglected tropical diseases by the World Health Organization due to their significant disease burden and associated socioeconomic losses (http://who.int/neglected_diseases/diseases/en/).
Echinococcus granulosus and E. multilocularis are the nearest phylogenetic neighbors in the family Taeniidae [6]: the two organisms share multiple aspects of growth and developmental plasticity and similarities in their intermediate and definitive hosts. The genomes of these two parasites each comprise approximately 115 megabases and show 96% sequence identity within the coding regions [7, 8]. They display the unique expansion of similar gene families that specialize in nutrient uptake from the host and protection from host defensive system [8]. Interestingly, they differ markedly in their biological features, such as morphological characteristics during growth and development, and invasion into adjacent tissues w
Answered by
0
Answer:
Echinococcus granulosus (sensu lato) causes cystic echinococcosis and is the form most frequently encountered. Another species, E. multilocularis, causes alveolar echinococcosis, and is becoming increasingly more common.
Similar questions
Math,
7 months ago
Biology,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago