Math, asked by shivaniw368, 8 months ago

differentiate
{ tan^-1 cosx/1+sinx}​

Answers

Answered by shadowsabers03
7

Given,

\longrightarrow y=\tan^{-1}\left(\dfrac{\cos x}{1+\sin x}\right)

We've to differentiate this y wrt x.

We take the tangent and,

\longrightarrow \dfrac{\cos x}{1+\sin x}=\tan y

But,

  • \cos(2A)=\cos^2A-\sin^2A
  • \sin(2A)=2\sin A\cos A
  • \sin^2A+\cos^2A=1

Thus,

\longrightarrow \dfrac{\cos^2\left(\dfrac{x}{2}\right)-\sin^2\left(\dfrac{x}{2}\right)}{\cos^2\left(\dfrac{x}{2}\right)+\sin^2\left(\dfrac{x}{2}\right)+2\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right)}=\tan y

\longrightarrow \dfrac{\left(\cos\left(\dfrac{x}{2}\right)-\sin\left(\dfrac{x}{2}\right)\right)\left(\cos\left(\dfrac{x}{2}\right)+\sin\left(\dfrac{x}{2}\right)\right)}{\left(\cos\left(\dfrac{x}{2}\right)+\sin\left(\dfrac{x}{2}\right)\right)^2}=\tan y

\longrightarrow \dfrac{\cos\left(\dfrac{x}{2}\right)-\sin\left(\dfrac{x}{2}\right)}{\cos\left(\dfrac{x}{2}\right)+\sin\left(\dfrac{x}{2}\right)}=\tan y

Dividing both numerator and denominator by \cos\left(\dfrac{x}{2}\right),

\longrightarrow \dfrac{1-\tan\left(\dfrac{x}{2}\right)}{1+\tan\left(\dfrac{x}{2}\right)}=\tan y

\longrightarrow \dfrac{\tan\left(\dfrac{\pi}{4}\right)-\tan\left(\dfrac{x}{2}\right)}{1+\tan\left(\dfrac{\pi}{4}\right)\cdot\tan\left(\dfrac{x}{2}\right)}=\tan y

Since \tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B},

\longrightarrow \tan\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=\tan y

\longrightarrow y=\dfrac{\pi}{4}-\dfrac{x}{2}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=-\dfrac{1}{2}}}

Thus differentiated!

Answered by Anonymous
1

Given , the function is

  •  \tt y = {tan}^{ - 1}  \{ \frac{cos(x)}{1 + sin(x)}  \}

Differentiating y wrt x , we get

 \tt \implies \tt \frac{dy}{dx}  =  \frac{d \bigg \{ {tan}^{ - 1}  \{ \frac{cos(x)}{1 + sin(x)}   \} \bigg\}}{dx}

 \tt \implies \frac{dy}{dx}   \frac{1}{1 +  { \{ \frac{cos(x)}{1 + sin(x)}\}}^{2} }  \frac{d \{\frac{cos(x)}{1 + sin(x)} \}}{dx}

 \tt \implies  \frac{dy}{dx}  =  \frac{ { \{1 +  sin(x) \} }^{2} }{ { \{1 + sin(x) \}}^{2}  +  {cos}^{2} (x)}   \bigg\{   \frac{1 + sin(x) \frac{d \{ cos(x)\}}{dx}  - cos(x) \frac{d \{1 + sin(x) \}}{dx} }{ { \{(1 + sin(x) \}}^{2} }  \bigg\}

 \tt \implies  \frac{dy}{dx}  =  \frac{ \{1 + sin(x) \} \{- sin(x) \}  - cos(x)cos(x)}{  { \{1 + sin(x) \}}^{2} +  {cos}^{2}(x)  }

 \tt \implies  \frac{dy}{dx}  =  \frac{ - sin(x) -  {sin}^{2}(x) -  {cos}^{2}( x) }{ {1 +  {sin}^{2} (x)  + 2sin(x) +  {cos}^{2} (x)}}

 \tt \implies  \frac{dy}{dx}  = \frac{ - sin(x) -  \{  {sin}^{2} (x) +  {cos}^{2}(x) \}}{1 + 2sin(x) + 1}

 \tt \implies  \frac{dy}{dx}  =  \frac{ - sin(x) - 1}{2 + 2sin(x)}

 \tt \implies \frac{dy}{dx}  = \frac{ -  \{ sin(x) + 1\}}{2 \{1 + sin(x) \}}

 \tt \implies \frac{dy}{dx}  = -  \frac{1}{2}

Remmember :

 \tt \implies \frac{d \{  {tan}^{ - 1}x\}}{dx}   =  \frac{1  }{1 +  {(x)}^{2} }

  \tt \implies  \frac{d( \frac{u}{v} )}{dx}  =  \frac{v \frac{du}{dx} - u \frac{dv}{dx}  }{ {(v)}^{2} }

 \tt \implies  \frac{d \{cos(x) \}}{dx}  =  - sin(x)

 \tt \implies  \frac{d \{ constant\}}{dx}  = 0

 \tt \implies \frac{d \{sin(x) \}}{dx}  =   cos(x)

 \tt \implies  {sin}^{2} (x) +  {cos}^{2} (x) = 1

Similar questions