Math, asked by vaishubh1707, 3 days ago

Differentiate the following w.r.t x​

Attachments:

Answers

Answered by mathdude500
4

Question :-

Differentiate the following function with respect to x :-

\rm \:  {e}^{x}( {sec}^{2}x + tanx) + \dfrac{cosx}{x} - sinxlogx -  {5}^{x}\bigg(\dfrac{2xlog5 + 1}{2 \sqrt{x} } \bigg)  \\

\large\underline{\sf{Solution-}}

Given function is

\rm \:  {e}^{x}( {sec}^{2}x + tanx) + \dfrac{cosx}{x} - sinxlogx -  {5}^{x}\bigg(\dfrac{2xlog5 + 1}{2 \sqrt{x} } \bigg)  \\

Let assume that

\rm \: y = u + v - w - z \\

So, that

\rm \: \dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx} - \dfrac{dw}{dx} - \dfrac{dz}{dx}  -  -  - (1)\\

where,

\rm \: u =  {e}^{x}( {sec}^{2}x + tanx) \\ \rm \: v =  \dfrac{cosx}{x} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \rm \: w =  sinxlogx  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \rm \: z =  {5}^{x}\bigg(\dfrac{2xlog5 + 1}{2 \sqrt{x} } \bigg)  \\

Now, Consider

\rm \: u = {e}^{x}( {sec}^{2}x + tanx) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{du}{dx} = {e}^{x}\dfrac{d}{dx}( {sec}^{2}x + tanx)  + ( {sec}^{2}x + tanx)\dfrac{d}{dx}{e}^{x}\\

\rm \:  = {e}^{x}(2secx \times secxtanx +  {sec}^{2}x) + {e}^{x}( {sec}^{2}x + tanx)

\rm \:  = {e}^{x}(2sec^{2} x tanx +  {sec}^{2}x) + {e}^{x}( {sec}^{2}x + tanx)

\rm \:  = {e}^{x}(2sec^{2} x tanx +  {sec}^{2}x+ {sec}^{2}x + tanx)

\rm \:  = {e}^{x}(2sec^{2} x tanx +  2{sec}^{2}x + tanx) \\

\rm\implies \:\dfrac{du}{dx} = {e}^{x}(2sec^{2} x tanx +  2{sec}^{2}x + tanx) -  - (2) \\

Now, Consider

\rm \: v = \dfrac{cosx}{x}  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{dv}{dx} =  \frac{x\dfrac{d}{dx}cosx - cosx\dfrac{d}{dx}x}{ {x}^{2} }  \\

\rm \: \dfrac{dv}{dx} =   \frac{ - xsinx - cosx}{ {x}^{2} }  \\

So,

\rm\implies \:\rm \: \dfrac{dv}{dx} =   \frac{ - xsinx - cosx}{ {x}^{2} } -  -  - (3)  \\

Now, Consider

\rm \: w = sinx \: logx \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{dw}{dx} = sinx \: \dfrac{d}{dx}logx + logx\dfrac{d}{dx}sinx \\

\rm \: \dfrac{dw}{dx} = sinx  \times  \frac{1}{x}  + logx \: cosx \\

\rm\implies \:\rm \: \dfrac{dw}{dx} = \frac{sinx}{x}  + logx \: cosx  -  -  - (4)\\

Now, Consider

\rm \: z = {5}^{x}\bigg(\dfrac{2xlog5 + 1}{2 \sqrt{x} } \bigg) \\

\rm \: z = {5}^{x}\bigg(log5 \sqrt{x} +  \frac{1}{2 \sqrt{x} }  \bigg) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{dz}{dx} = {5}^{x}\dfrac{d}{dx}\bigg(log5 \sqrt{x} +  \frac{1}{2 \sqrt{x} }  \bigg) + \bigg(log5 \sqrt{x} +  \frac{1}{2 \sqrt{x} }  \bigg)\dfrac{d}{dx} {5}^{x}  \\

\rm \:  =  {5}^{x}\bigg(\dfrac{log5}{2 \sqrt{x} } - \dfrac{1}{4x \sqrt{x} } \bigg) + \bigg(log5 \sqrt{x} +  \dfrac{1}{2 \sqrt{x} }  \bigg) {5}^{x}log5 \\

\rm\implies \:\dfrac{dz}{dx}  =  {5}^{x}\bigg(\dfrac{log5}{2 \sqrt{x} } - \dfrac{1}{4x \sqrt{x} } \bigg) + \bigg(log5 \sqrt{x} +  \dfrac{1}{2 \sqrt{x} }  \bigg) {5}^{x}log5  -  - (5)\\

On substituting the values from equation (2), (3), (4), (5) in equation (1), we get

\bf\implies \:\dfrac{dy}{dx} \\

\rm \:  = {e}^{x}(2sec^{2} x tanx +  2{sec}^{2}x + tanx) +  \\ \rm \: \frac{ - xsinx - cosx}{ {x}^{2} } - \frac{sinx}{x}  -  logx \: cosx -  \\ \rm \: {5}^{x}\bigg(\dfrac{log5}{2 \sqrt{x} } - \dfrac{1}{4x \sqrt{x} } \bigg)  -  \bigg(log5 \sqrt{x} +  \dfrac{1}{2 \sqrt{x} }  \bigg) {5}^{x}log5 \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions