Math, asked by Manas0000Singh, 10 months ago

Differentiate wrt x...

Attachments:

Answers

Answered by ramlaxman24
0

Step-by-step explanation:

HOPE IT'S HELPFUL

THANK YOU...

Attachments:
Answered by DrNykterstein
1

</p><p>\sf \rightarrow \quad y =  \dfrac{ \sqrt{x} + 1 }{ \sqrt{x} - 1 }  \\  \\ \sf \rightarrow \quad y =  \dfrac{ \sqrt{x}  + 1}{ \sqrt{x} - 1 }  \times  \dfrac{ \sqrt{x}  + 1}{ \sqrt{x} + 1 }  \\  \\ \sf \rightarrow \quad y =  \dfrac{x + 1 + 2 \sqrt{x} }{x - 1}  \\  \\ \sf \rightarrow \quad  \dfrac{dy}{dx}  =  \dfrac{d}{dx}  \bigg(\dfrac{x + 1 + 2 \sqrt{x} }{x - 1} \bigg)  \\  \\ \sf \rightarrow \quad  \dfrac{dy}{dx}  =  \dfrac{  \dfrac{d}{dx} \bigg(x + 1 + 2 \sqrt{x}  \bigg) \cdot (x - 1)   -  \dfrac{d}{dx} \bigg( x - 1\bigg) \cdot (x + 1 + 2 \sqrt{x}  )}{  {(x - 1)}^{2}  }  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \dfrac{ \bigg(1 +  \dfrac{ \cancel{2}}{ \cancel{2} \sqrt{x} } \bigg)(x - 1) - (x + 1 + 2 \sqrt{x})  }{ {(x - 1)}^{2} }  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \dfrac{ \bigg( \dfrac{x +  \sqrt{x} }{x} \bigg)(x - 1) -( x +  1  +  2 \sqrt{x})  }{ {(x - 1)}^{2} }  \\  \\ \sf \rightarrow \quad   \frac{dy}{dx}  =  \dfrac{  \bigg(\dfrac{ {x}^{2}  - x + x \sqrt{x} -  \sqrt{x}  }{x}  \bigg) - (x + 1 + 2 \sqrt{x} )}{ {(x - 1)}^{2} }  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \dfrac{ \dfrac{ \cancel{ {x}^{2} } - x + x \sqrt{x} -  \sqrt{x}  -  \cancel{ {x}^{2}} - x - 2x \sqrt{x}    }{x} }{ {(x - 1)}^{2} } \\  \\  \sf \rightarrow \quad  \frac{dy}{dx}  =  \dfrac{ - 2x + (x - 1 - 2x) \sqrt{x} }{x {(x - 1)}^{2} }  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \dfrac{ - 2x   -  (x + 1) \sqrt{x} }{x {(x - 1)}^{2} } </p><p>

Similar questions