Math, asked by siri711161, 8 months ago

differentiate x^sinx + sinx^cosx with respect to x​

Answers

Answered by sandy1816
0

let \:  \:  \:  \: u =  {x}^{sinx}  \\  \:  \:  \:  \:  \:  \:  \:  \: v =  {sinx}^{cosx}  \\  \\ let \:  \:  \:  \: y = u + v \\  \\  \frac{dy}{dx}  =  \frac{du}{dx}  =  \frac{dv}{dx} ...(1) \\  \\ now \:  \:  \:  \: u =  {x}^{sinx}  \\  logu = sinxlogx \\  \frac{1}{u}  \frac{du}{dx}  = sinx \frac{1}{x}  + logxcosx \\  \frac{du}{dx}  = u( \frac{sinx}{x}  + logxcosx) \\  \frac{du}{dx}  =  {x}^{sinx} ( \frac{sinx}{x}  + logxcosx) \\  \\ v =  {sinx}^{cosx}  \\ logv = cosxlogsinx \\  \frac{1}{v}  \frac{dv}{dx}  = cosx \frac{1}{sinx} cosx + logsinx( - sinx) \\  \frac{dv}{dx}  = v( \frac{ {cos}^{2} x}{sinx}  - sinxlogsinx) \\  \frac{dv}{dx}  =  {sinx}^{cosx} ( \frac{ {cos}^{2}x }{sinx}  - sinxlogsinx) \\  \\  \\  \frac{dy}{dx}  =  {x}^{sinx} ( \frac{sinx}{x}  + logxcosx) +  {sinx}^{cosx} (  \frac{ {cos}^{2}x }{sinx}  - sinxlogsinx)

Similar questions