English, asked by RituBhargav, 1 year ago

Differentiate x^x^x w.r.tx

Answers

Answered by Anonymous
64

Correct Question:

Differentiate

 { {x}^{x} }^{x}

W.r.t.x

Solution:

let \: y =  { {x}^{x} }^{x} .......(1)

Taking log on both side,

log \: y = log { {x}^{x} }^{x}  =  {x}^{x}  logx...........(2)

Again taking log on both sides , we get;

log(log \: y) = log( {x}^{x}  \: logx) \\  \\  = log {x}^{x}  + log(logx) \\  \\ [log \: mn = log \: m + log \: n] \\  \\  = x \: logx + log(logx)

Now differentiating both side w.r.t.x we get,

 \frac{1}{log \: y} . \frac{d}{dx} (log \: y) = [x \:   \frac{d}{dx} (log \: x) + log \: x. \frac{d}{dx} (x)] +  \frac{1}{logx} . \frac{d}{dx} (logx) \\

_________________________

By Product Rule,

 \frac{d}{dx}(xy)  = x \frac{d}{dx}(y)  + y \frac{d}{dx} x

_________________________

 =  >  \frac{1}{log \: y} . \frac{1}{y} . \frac{dy}{dx}  = [x. \frac{1}{x}  + log \: x.1] +  \frac{1}{log \: x} . \frac{1}{x}  \\  \\  =  >  \frac{1}{y \: log \: y} . \frac{dy}{dx}  = (1 + logx) +  \frac{1}{xlogx}  \\  \\  =  >  \frac{dy}{dx}  = y \: log \: y[1 + log \: x +  \frac{1}{x \: log \: x} ] \\  \\

Hence, Using (1) and (2) we get

 \frac{dy}{dx}  =  { {x}^{x} }^{x}  \: log \: x[1 + log \: x +  \frac{1}{x \: log \: x} ]

Similar questions