differentiate (xsinx+cosx)(sinx-xcosx)
Answers
Answered by
31
use differentiation concept
y=f (x).g (x)
dy/dx=f (x).dg (x)/dx+g (x) df (x)/dx
now
dy/dx=(xsinx+cosx) d (sinx-xcosx)/dx+(sinx-xcosx) d (xsinx+cosx)/dx
=(xsinx+cosx)(cosx+xsinx-cosx)+(sinx-xcosx)(xcosx+sinx-sinx)
=(xsinx+cosx)(xsinx)+(cosx-xcosx)(xcosx)
=x^2sin^2x+xsinx.cosx+xcosx.sinx-x^2cos^2x
=x^2cos2x+2xsinx.cosx
=x^2cos2x+xsin2x
y=f (x).g (x)
dy/dx=f (x).dg (x)/dx+g (x) df (x)/dx
now
dy/dx=(xsinx+cosx) d (sinx-xcosx)/dx+(sinx-xcosx) d (xsinx+cosx)/dx
=(xsinx+cosx)(cosx+xsinx-cosx)+(sinx-xcosx)(xcosx+sinx-sinx)
=(xsinx+cosx)(xsinx)+(cosx-xcosx)(xcosx)
=x^2sin^2x+xsinx.cosx+xcosx.sinx-x^2cos^2x
=x^2cos2x+2xsinx.cosx
=x^2cos2x+xsin2x
abhi178:
I hope this is helpful
Similar questions