English, asked by lalitaGeorge417, 1 year ago

differentiate y with respect to x where y = e^(cot^-1 x^4)^7 2

Answers

Answered by kvnmurty
2
we use the chain rule to do the differentiation.

y = e^{(Cot^{-1}x^4)^7}\\\\Let\ w=Cot^{-1}x,\ \ cot\ w=x\\\frac{1}{x}=tan\ w,\ \ -1/x^2=sec^2w\ w'\\\\w'=-\frac{1}{1+x^2}\\\\d(cot^{-1}x^4)/dx = -\frac{1}{1+x^8}*(4x^3)\\\\\frac{d(e^{z^7})}{dz}=e^{z^7}*7z^6\\\\now\ y'=y*7(cot^{-1})^6*[- \frac{1}{1+x^8}*(4x^3) ]

kvnmurty: click on thanks button above pls
Similar questions