Divide 3x2 ‒ x3 ‒ 3x + 5 by x ‒ 1 ‒ x2 and verify the division algorithm.
Answers
Step-by-step explanation:
Let f(x) = 3x² - x³ - 3x + 5 and g(x) = x - 1 - x²
Long Division Method:
-x² + x - 1) -x³ + 3x² - 3x + 5(x - 2
-x³ + x² - x
-------------------------
2x² - 2x + 5
2x² - 2x + 2
----------------------
3
Verification:
Dividend = Divisor * Quotient + Remainder
= (-x² + x - 1) - (x - 2) + 3
= -x³ + x² - x + 2x² - 2x + 2 + 3
= 3x² - x³ - 3x + 5
Hope it helps!
3x^2-x^3-3x+5
also , -x^3+3x^2-3x+5
x^2+x-1 ) -x^3+3x^2-3x+5 ( -x+4
- x^3 -x^2+x
________________
4x^2-4x+5
4x^2 - 4x-4
_______________
-8x+9
clearly , remainder = -8+9
quotient = -x+4
using division algorithm ,
a = b*q+r
= (x^2+x-1)(-x+4)-8+9
= -x^3+3x^2-3x+5
also , 3x^2-x^3-3x+5 ( dividend )