Math, asked by yashbabu90, 1 year ago

Divide 3x2 ‒ x3 ‒ 3x + 5 by x ‒ 1 ‒ x2 and verify the division algorithm.​


yashbabu90: hey
HannanM: boy
yashbabu90: tnx bro
HannanM: your welcome
HannanM: did you get promoted to 10 for the academic year 19-20
HannanM: or to 11th grade
siddhartharao77: Please, dont disturb here!
HannanM: ohh sorry siddhart
HannanM: bye

Answers

Answered by siddhartharao77
290

Step-by-step explanation:

Let f(x) = 3x² - x³ - 3x + 5 and g(x) = x - 1 - x²

Long Division Method:

-x² + x - 1) -x³ + 3x² - 3x + 5(x - 2

                -x³ +  x²  - x

                 -------------------------

                           2x² -  2x  +  5

                           2x²  -  2x  +  2

                            ----------------------

                                               3

     

Verification:

Dividend = Divisor * Quotient + Remainder

                = (-x² + x - 1) - (x - 2) + 3

                = -x³ + x² - x +  2x² - 2x + 2 + 3

                = 3x² - x³ - 3x + 5

Hope it helps!

Answered by Siddharta7
79

3x^2-x^3-3x+5

 also , -x^3+3x^2-3x+5

x^2+x-1 ) -x^3+3x^2-3x+5 ( -x+4

              - x^3 -x^2+x          

              ________________            

                     4x^2-4x+5

                     4x^2 - 4x-4

                 _______________

                                -8x+9                  

 

clearly , remainder = -8+9

            quotient = -x+4

  using  division algorithm ,

   a = b*q+r

      = (x^2+x-1)(-x+4)-8+9

     =  -x^3+3x^2-3x+5

   also , 3x^2-x^3-3x+5 ( dividend )

Similar questions