Math, asked by SHZ123, 1 month ago

Don't spam
prove \: that \\  { \cos( \alpha ) }^{3}  \cos(3 \alpha )  +  { \sin( \alpha ) }^{3}  \sin(3 \alpha )  =  { \cos(2 \alpha ) }^{3}








Answers

Answered by TrustedAnswerer19
162

Appropriate question :

 \bf \: prove \: that \:  \\    \rm \:  {cos}^{3}  \alpha . \: cos3 \alpha  +  {sin}^{ 3}  \alpha .sin \: 3 \alpha  =  {cos}^{3}  \: 3 \alpha

Solution :

{\boxed{\boxed{\begin{array}{cc} \rm \: L.H.S =  {cos}^{3}  \alpha \:  . \: cos \: 3 \alpha  +  {sin}^{3}   \alpha  \: . \: sin \: 3 \alpha  \\  \\  \rm  =  \frac{1}{4} .  (4 \:  {cos}^{3}  \alpha ).cos \: 3 \alpha  +  \frac{1}{4} . (4 \: sin {}^{3}    \alpha ).sin \: 3 \alpha  \\  \\ \orange{{\boxed{\begin{array}{cc} \text{we \: know \: that : } \\  \\ \to \:  \rm \: cos \: 3x = 4 {cos}^{3}x - 3 \: cos \: x \\  \therefore \rm \: 4 \:  {cos}^{3}  x = cos \: 3x + 3 \: cos \: x \\  \\  \to \rm \: sin \: 3x = 3 \: sin \: x - 4 {sin}^{3} x \\  \therefore \:  \rm \: 4 {sin}^{3}  x = 3 \: sin \: x - sin \: 3x\end{array}}}}  \\  \pink{ \text{apply \: this}} \\  \\  \rm =  \frac{1}{4}.(cos \: 3 \alpha  + 3 \: cos \:  \alpha ).cos \: 3 \alpha +  \frac{1}{4}  .(3 \: sin \:   \alpha  - sin \: 3 \alpha ) .sin \: 3 \alpha  \\  \\  \rm =  \frac{1}{4} .( {cos}^{2}   \: 3\alpha  + 3 \: cos \:  \alpha .cos \: 3 \alpha ) +  \frac{1}{4}  .(3 \: sin \:  \alpha  \: sin \: 3 \alpha  -  {sin}^{2} \: 3 \alpha ) \\  \\  \rm =   \frac{1}{4} .( {cos}^{2}   \: 3\alpha  + 3 \: cos \:  \alpha .cos \: 3 \alpha  + 3 \: sin \:  \alpha  \: sin \: 3 \alpha  -  {sin}^{2} \: 3 \alpha )   \\  \\  \rm =  \frac{1}{4}. \{ {cos}^{2}  3 \alpha  -  {sin}^{2}3 \alpha  + 3 (cos \:  \alpha  \: cos \: 3 \alpha  + sin \:  \alpha  \: sin \: 3 \alpha ) \} \end{array}}}}

 {\boxed{\boxed{\begin{array}{cc}  \orange{{\boxed{\begin{array}{cc}\text{we \: know \: that} \\  \\   \to  \: \rm \: {cos}^{2} \: x -  {sin}^{2}  \: x = cos \: 2x \\  \\  \to  \:  \rm \: cos \: x \: cos \: y + sin \: x \: sin \: y = cos(x  - y)  \\  \end{array}}}} \\ \pink{ \text{ apply \: this}} \\  \\  \rm =  \frac{1}{4}. \{cos \: 2.3 \alpha  + 3cos(3x - x) \} \\  \\  \rm =  \frac{1}{4}(cos \: 3.2 \alpha  + 3cos \: 2 \alpha ) \\  \\   \rm=  \frac{1}{4}   \times 4 \:  {cos}^{3} \: 2 \alpha  \\  \\  \rm  =  {cos}^{3}  \: 3 \alpha  \\  \\  \rm = R.H.S\end{array}}}}

Hence, proved

____

Assalamu A'laikum,

Good morning... \ddot\smile

Tomader ki 1st year final exam a short syllabus er upor exam hobe naki syllabus komano hoini ?

Similar questions