Draw the graph of quadratic polynomial
P(x) = x^{2} - x - 2
and write the
solution
Answers
EXPLANATION.
Graph of the quadratic equation.
⇒ p(x) = x² - x - 2.
As we know that,
Factorizes the equation into middle term splits, we get.
⇒ p(x) = x² - 2x + x - 2.
⇒ p(x) = x(x - 2) + 1(x - 2).
⇒ p(x) = (x + 1)(x - 2).
Zeroes of the equation.
⇒ (x + 1)(x - 2) = 0.
⇒ x = -1 and x = 2.
Put the value of x in equation, we get.
⇒ p(x) = x² - x - 2.
Put the value of x = -1 in equation, we get.
⇒ y = (-1)² - (-1) - 2.
⇒ y = 1 + 1 - 2.
⇒ y = 2 - 2.
⇒ y = 0.
Their Co-ordinates = (-1,0).
Put the value of x = 2 in equation, we get.
⇒ y = (2)² - (2) - 2.
⇒ y = 4 - 2 - 2.
⇒ y = 4 - 4.
⇒ y = 0.
Their Co-ordinates = (2,0).
Put the value of x = 0 in equation, we get.
⇒ y = (0)² - (0) - 2.
⇒ y = -2.
Their Co-ordinates = (0,-2).
Answer:
Given :-
To Find :-
Solution
Solution :-
At first we need to factorise
P(x) = x² - x - 2
P(x) = x² - (2x - x) - 2
P(x) = x² - 2x - x - 2
P(x) = x(x - 2) + 1(x - 2)
P(x) = (x + 1)(x - 2)
Either,
x = 0 - 1
x = - 1
or
x = 0 + 2
x = 2
When x = -1
(-1)² - (-1) - 2
(1) + 1 - 2
2 - 2
0
Coordinate = (-1,0)
When x = 2
(2)² - 2 - 2
4 - 2 - 2
2 - 2
0
Coordinate = (2,0)
Therefore,
x = 0
(0)² - 0 - 2
0 - 0 - 2
0 - 2
- 2
Coordinates = (0,-2)