Physics, asked by anshulrathore74481, 17 days ago

drive the a formula for root mean square value of alternating current.
(or)
prove that Irms=Io/√2

Answers

Answered by vikkiain
2

use \:  \:  \: \boxed{I = I_{o}sin  \: \omega \: t }

Explanation:

we \:  \: know \:  \: that \:  \:  \boxed{I = I_{o}sin  \: \omega \: t } \\ Now, \:  \:  \: I_{rms}^{2}  =  \frac{ \int_{0 }^{T}  {I}^{2}dt }{ \int_{0 }^{T}dt}  \\  = \frac{ \int_{0 }^{T}  {(I_{o}sin  \: \omega \: t})^{2}dt }{T} \\  = \frac{ \int_{0 }^{T}  {I_{o}^{2} sin^{2}   \: \omega \: t}dt }{T} \\  =  \frac{I_{o}^{2}}{2T} { \int_{0 }^{T}{ (1 - cos2 \omega \: t)}dt } \\  = \frac{I_{o}^{2}}{2T} [ t -  \frac{sin2 \omega \: t}{2 \omega}  ]_{T}^{0}  \\  = \frac{I_{o}^{2}}{2T}\times [(0 - 0) - (0 - T)] \\  = \frac{I_{o}^{2}}{2T} \times T \\  =\frac{I_{o}^{2}}{2} \\ so \:  \:  \:  \: I_{rms} =  \sqrt{\frac{I_{o}^{2}}{2} }  =  \frac{I_{o}}{ \sqrt{2} }

Similar questions