Math, asked by sumit001, 1 year ago

due to an increase in the price of sugar by 25% by how much a householder decrease the consumption of sugar so that there is no increase in the expenditure on sugar

Answers

Answered by Mercidez
17
\large\bold{\boxed{Solution :} }

\blue{Let \: \: consumption \: \: of \: \: sugar \: \: originally}
\blue{be \: \: 1 \: \: unit \: \: and \: \: cost \: \: of \: \: 1 \: \: unit}
be \: \red{ Rs} \: \: 100

\blue{But \: \: now \: \: cost \: \: of \: \: 1 \: \: unit \: = 100 + 25}
 = 125

Now \: \red{ Rs} \: \: 100 \: \: be \: \: the \: \: cost \: \: of \: \: 1
unit \: \: \: sugar

\red{Rs} \: \: 1 \: \: be \: \: the \: \: cost \: \: of \: \: \frac{1}{125} \: \: unit \: \: \\
sugar

\red{Rs }\: \: 100 \: \: be \: \: the \: \: cost \: \: of \: \: \frac{1}{125} \times 100 \\
 = \frac{4}{5} \: \: unit \: \: sugar \\

\blue{Reduction \: \: \: of \: \: \: consumption}

\red{ = 1 - \frac{4}{5}} \\

\blue{ = \frac{5 - 4}{5} }\\

\red{ = \frac{1}{5} \: \: unit}\\ \: \:

\blue{Required \: \: percent \: of \: \: reduction}

\red{ = \frac{1}{5 \times 1} \times 100 \%}\\

\red{ = \frac{100}{5} \%} \\

\red{ = 20\% }\: \: \large\bold{\boxed{ Ans}}

Mercidez: mark as brainliest
Similar questions