Math, asked by shvprsdkanthi, 11 months ago

each of the equal side of an isosceles triangle is 13 cm and its base is 24cm . The area of triangle is ​

Answers

Answered by Brâiñlynêha
83

\huge\mathbb{SOLUTION:-}

\sf\underline{\pink{\:\:\:\:\:\:\:\: Given:-\:\:\:\:\:\:}}

\sf\bullet sides\:of\:isosceles \triangle\\ \sf:\implies 13cm\:,13cm\:and\:24cm

  • We have to find the Area of ∆

  • By heron's Formula we can find our answer

\boxed{\sf{Area=\sqrt{s(s-a)(s-b)(s-c)}}}

\sf\bullet  where\:\: s \:\:is\:semi\: perimeter\\ \\ \sf:\leadsto s=\dfrac{a+b+c}{2}

\sf\underline{\red{\:\:\:\:\:\:\:\: A.T.Q:-\:\:\:\:\:\:}}

  • a= 13 cm

  • b=13cm

  • c= 24cm

\sf:\implies s=\dfrac{13+13+24}{2}\\ \\ \sf:\implies s=\cancel{\dfrac{50}{2}}=25\\ \\ \sf:\implies {\blue{semi\: perimeter=25cm}}

\sf:\implies Area=\sqrt{s(s-a)(s-b)(s-c)}\\ \\ \sf:\implies Area=\sqrt{25(25-13)(25-13)(25-24)}\\ \\ \sf:\implies Area=\sqrt{25\times 12\times 12\times 1}\\ \\ \sf:\implies Area=\sqrt{5\times 5\times 12\times 12}\\ \\ \sf:\implies Area=5\times 12\\ \\ \sf:\implies Area\:of\:triangle=60cm{}^{2}

\boxed{\sf{\blue{Area\:of\:triangle=60cm{}^{2}}}}

Answered by Anonymous
87

Plz refers to the attachments

Given:

Draw AD perpendicular bisector of BC

Therefore, BD=DC =>12cm

AB=AC=>13Cm [isosceles triangle]

 \mathbf \red{by  \: pythagoras  \: therome }

AD²=BD²-AB²

AD²=(13)²-(12)²

AD²=169-144

AD²=25

AD=5cm

Now ,

Area of triangle =1/2×base ×height

=1/2×24×5

=12×5

=60cm²

Attachments:
Similar questions