Science, asked by ruchitha68, 8 months ago

electronic configuration of metals ​

Answers

Answered by kumarmathan12334
0

Explanation:

Electronic configuration of an element is characterized as an arrangement of electrons in the orbital. Orbitals s, p, d, and f are the four chief nuclear orbitals. ... The d–orbitals of the penultimate energy level in their atoms get electrons leading to the three columns of the transition metals

Answered by Anonymous
4

Electronic configuration of an element is characterized as an arrangement of electrons in the orbital. Orbitals s, p, d, and f are the four chief nuclear orbitals. These orbitals ought to be filled by the number of electrons and the energy level of the orbital. We can arrange the four orbitals by their energy level as s < p < d < f. As indicated by Aufbau’s principle the most reduced energy orbital ought to be filled first

The s orbital can get two electrons while p, d and f orbitals can hold 6, 10 and 14 electrons separately. Generally, the electronic configuration of these elements is (n-1) d 1–10ns 1–2. The (n–1) remains for the inward d orbitals which may have one to ten electrons and the peripheral ns orbital may have one or two electrons.

The d block includes the middle area marked by s and p blocks in the periodic table. The very name “transition” given to the elements of d-block is simply because of their position amongst the s and p block elements. The d–orbitals of the penultimate energy level in their atoms get electrons leading to the three columns of the transition metals, i.e., 3d, 4d and 5d. The fourth line of 6d is still inadequate.

Similar questions