Math, asked by Siddhu4887, 10 months ago

Equation of circle passing through (1,√3) (1, -√3) (3, √3)

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{Points are}\;\mathsf{(1,\sqrt{3}),(1,-\sqrt{3})\;and\;(3,\sqrt{3})}

\textbf{To find:}

\textsf{Equation of circle passing through the given 3 points}

\textbf{Solution:}

\textbf{Let the equation circle be}\;\mathsf{x^2+y^2+2gx+2fy+c=0}...........(1)

\mathsf{Circle\;(1)\;passes\;through\;(1,\sqrt{3}),(1,-\sqrt{3})\;and\;(3,\sqrt{3})}

\mathsf{1^2+\sqrt{3}^2+2g(1)+2f(\sqrt{3})+c=0}

\mathsf{1+3+2g+2\sqrt{3}f+c=0}

\mathsf{2g+2\sqrt{3}f+c=-4}.......(2)

\mathsf{1^2+(-\sqrt{3})^2+2g(1)+2f(-\sqrt{3})+c=0}

\mathsf{1+3+2g-2\sqrt{3}f+c=0}

\mathsf{2g-2\sqrt{3}f+c=-4}.......(3)

\mathsf{3^2+\sqrt{3}^2+2g(3)+2f(\sqrt{3})+c=0}

\mathsf{9+3+6g+2\sqrt{3}f+c=0}

\mathsf{6g+2\sqrt{3}f+c=-12}.......(4)

\mathsf{(2)-(3)\implies\;4\sqrt{3}\,f=0}

\implies\boxed{\mathsf{f=0}}

\mathsf{Now\;(3)\;and\;(4)\;becomes}

\mathsf{2g+c=-4}.......(3)

\mathsf{6g+c=-12}.......(4)

\mathsf{(3)-(4)\implies}

\mathsf{-4g=8}

\implies\boxed{\mathsf{g=-2}}

\mathsf{(3)\implies\;-4+c=-4}

\implies\boxed{\mathsf{c=0}}

\textsf{The equation of the required circle is}

\mathsf{x^2+y^2+2(-2)x+2(0)y+0=0}

\boxed{\mathsf{x^2+y^2-4x=0}}

\textbf{Find more:}}

Find the centre of a circle passing through (5,-8), (2,-9) and (2,1)

https://brainly.in/question/2157999

Find the equation of circle passing through a point (1,1) (2,-1) and (3,5)

https://brainly.in/question/26647196

Similar questions