Math, asked by shivani9426, 11 months ago

Evaluate each of the following:
2sin²30°-3cos²45°+tan²60°

Answers

Answered by Muhammedfidal
3

Answer:

Given :  

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3= (1 - 3)/2 + 3

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3= (1 - 3)/2 + 3= - 2/2 + 3

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3= (1 - 3)/2 + 3= - 2/2 + 3= -1 + 3 = 2

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3= (1 - 3)/2 + 3= - 2/2 + 3= -1 + 3 = 22 sin² 30° - 3cos² 45° + tan² 60° = 2

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3= (1 - 3)/2 + 3= - 2/2 + 3= -1 + 3 = 22 sin² 30° - 3cos² 45° + tan² 60° = 2Hence , 2 sin² 30° - 3cos² 45° + tan² 60° = 2

Given :  2 sin² 30° - 3cos² 45° + tan² 60°          = 2(1/2)² - 3(1/√2)² + (√3)²[sin 30° = ½  , cos 45° =1/√2, tan 60° = √3]= 2(1/4)  - 3(1/2) + 3= (½ - 3/2) + 3= (1 - 3)/2 + 3= - 2/2 + 3= -1 + 3 = 22 sin² 30° - 3cos² 45° + tan² 60° = 2Hence , 2 sin² 30° - 3cos² 45° + tan² 60° = 2HOPE THIS ANSWER WILL HELP YOU…

MARK IT AS BRAINLIEST

Answered by dhruv558961
6

Step-by-step explanation:

we have to evaluate

2  {{ \sin^{2}30 }} - 3 { \cos^{2} 45 } +  { \tan^{2}60 }

we know that value of sin30°is 1/2

value of cos45°is 1/√2

and value of tan60° is √3

2 {( \frac{1}{2}) }^{2}  - 3 { (\frac{1}{ \sqrt{2} }) }^{2}  +  { (\sqrt{3} )}^{2}

2 \times  \frac{1}{4}  - 3 \times  \frac{1}{2}   +  3

 \frac{1}{2}   -  \frac{3}{2}  + 3

 \frac{ - 2}{2}  + 3

 - 1 + 3

2

so after evaluating equation we will get 2

PLEASE MARK MY ANSWER AS BRAINLIEST AND THANK ME.

Similar questions