Math, asked by sjaisheelmalik100, 4 months ago

Evaluate:
Integration(tan^-1 (sec x + tan x) dx),
0 <= x <= (pi/2)​

Attachments:

Answers

Answered by Anonymous
13

Given Integrand,

 \displaystyle \sf \int  {tan}^{ - 1} (sec \: x \:  + tan \: x)dx

Consider sec x + tan x,

 \sf \: sec \: x + tan \: x \\  \\  \dashrightarrow \sf \:  \dfrac{1 + sin \: x}{cos \: x}  \\  \\ \dashrightarrow \sf \:  \dfrac{cos {}^{2} \dfrac{x}{2}  +  {sin}^{2}  \dfrac{x}{2} + 2sin \dfrac{x}{2}cos \dfrac{x}{2}  }{cos {}^{2} \dfrac{x}{2} -  {sin}^{2}  \dfrac{x}{2}   }   \\  \\ \dashrightarrow \sf \:   \dfrac{(sin \dfrac{x}{2} + cos \dfrac{x}{2} ) {}^{2}  }{(sin \dfrac{x}{2} + cos \dfrac{x}{2})( - sin \dfrac{x}{2}  +  cos \dfrac{x}{2})} \\  \\ \dashrightarrow \sf \:   \dfrac{sin \dfrac{x}{2} + cos \dfrac{x}{2}}{cos \dfrac{x}{2} - sin \dfrac{x}{2} }

Dividing Nr and Dr by tan(x/2),

\dashrightarrow \sf \:   \dfrac{1+tan\dfrac{x}{2}}{ 1- tan \dfrac{x}{2} } \\  \\ \dashrightarrow \sf \:   \dfrac{tan \dfrac{\pi}{4} +tan\dfrac{x}{2}}{tan \dfrac{\pi}{4} - tan \dfrac{x}{2} }

Of the form tan(A + B),

 \dashrightarrow \sf \: tan( \dfrac{x}{2} +  \dfrac{\pi}{4}  )

Now,

 \implies \:  \displaystyle \sf \int  {tan}^{ - 1}  \{tan( \dfrac{x}{2} +  \dfrac{\pi}{4}  ) \}dx \\  \\ \implies \:  \displaystyle \sf \int   \{ \dfrac{x}{2} +  \dfrac{\pi}{4}  \}dx \\  \\  \implies \displaystyle \sf  \dfrac{1}{2} \int x.dx +  \dfrac{\pi}{4}  \int dx \\  \\  \implies \boxed{ \boxed{ \sf  \dfrac{ {x}^{2} }{4} +  \dfrac{\pi x}{4}  + C}}

Similar questions